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A B S T R A C T

Identification of geographical space enveloped by suitable climatic conditions (i.e., climatic niche) that support
species survival over space and time is crucial in conservation biogeography. Numerous algorithms (e.g.,
Maxent, GARP) with increasing accuracy have been devised and are being employed to overcome the challenges
of forecasting climatic niche of species with incomplete information. The current study was conducted to map
the distribution of current and future climatic niche of endangered Himalayan musk deer, a species endemic to
Asia. Maxent and GARP modeling algorithms were individually employed to forecast current and future climatic
niche of the species using randomly collected occurrence records of the species and bioclimatic variables with
30″ resolution from ‘WorldClim’ datasets. Both the modeling processes performed optimally with regard to AUC
and TSS values and forecasted an increase/expansion of climatically-suitable geographical space in the future. A
final climatic niche distribution map was produced by combining the binary maps generated from each of the
processes to produce a relatively realistic and potentially accurate distribution of climatic niche of the species
over space and time. Conservation of forecasted suitable geographical space is recommended and future survey
efforts for potentially unexplored populations of the species in the forecasted suitable area are suggested.

1. Introduction

Identification and management of geographical space that supports
species' survival is a key to conservation of wildlife in their natural
habitats. With biodiversity increasingly being threatened or endangered
with extinction from a wide array of anthropogenic disturbances
(Millennium Ecosystem Assessment, 2005), the challenges of finding
areas that are environmentally conducive to the survival of little known
species, have intensified among conservationists. Moreover, the pro-
jected climate change and its varying effects on biodiversity over space
and time has further amplified the challenge of locating climatically-
suitable areas (i.e., climatic niche) in the future for species threatened
with extinction (Pounds et al., 1999; Thomas et al., 2004; van Gils et al.,
2016). The development of advanced computational algorithms with
increasing accuracy have helped in modeling the distribution of species
and mapping of potential current and future (e.g., under climate change
scenario) environmentally suitable space with wide applications in
conservation biogeography (see Guisan and Thuiller, 2005).

Numerous algorithms for modeling techniques of varying applica-
tions with data type and availabilities have been developed for species
distribution modeling (SDM) (see Elith et al., 2006). All these techni-
ques merely establish relationships between species' known occurrences

or absences with environmental characteristics of concern at those
geographical space and use those relationships to interpolate between
the known occurrences and extrapolate in novel areas or scenarios to
forecast a suitable area that support species' survival, under the
assumption of niche conservatism and/or stationarity (Holt and
Gaines, 1992; Petitgas, 2001). Of numerous modeling algorithms,
maximum entropy (Maxent) (Phillips et al., 2006) and genetic algo-
rithm for rule set-based prediction (GARP) (Stockwell and Peters, 1999)
have been widely used in conservation biogeography for modeling and
mapping the geographical range distribution of species with relatively
good success. A wide and increasing applications of these techniques in
distribution modeling is probably due to their requirement of species'
occurrence records only, which is usually the case with rare, elusive,
and declining species with relatively incomplete information about
their absences, but demanding an immediate conservation concern.

Himalayan musk deer (Moschus leucogaster) and alpine musk deer
(Moschus chrysogaster), in particular, are confined to high-altitude
forests of Bhutan, northern India, Pakistan, Nepal, and China along
the Hindukush Himalaya (Green, 1986; Grubb, 2005; Yang et al.,
2003). Owing to their small population size and geographic range, the
species have been listed in Appendix I of CITES and as endangered in
International Union for Conservation of Nature (IUCN) red list. Taking
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expert-based range map of IUCN red list as a reference, the species of
concern in this study is treated as Moschus leucogaster, although both
the species are interchangeably treated as Himalayan musk deer and/or
alpine musk deer. It is probably due to their small population size,
elusive behavior, overlapping habitat, morphological similarities, and
lack of genetic studies for species differentiation. Populations of
Himalayan musk deer are declining primarily due to habitat loss and
overexploitation (Timmins and Duckworth, 2015; Yang et al., 2003),
although estimates of the current population size of the species is
largely unknown. Moreover, studies on the species so far are scattered
and largely locally confined to a small geographical scale, and thus
demands for exploration and identification of climatically suitable areas
in its whole range that potentially aids in conservation of the species.
Also, the effect of predicted climate change on spatial distributions and
range-shifts of the species is unknown. Hence, the current study models
and maps the current climatically-suitable habitat (i.e., climatic niche)
of the species, and attempts to predict the distribution of future
geographic range under projected climate change scenario.

2. Methods

2.1. Data preparation

A total of 85 unique geographic coordinates (i.e., latitude and
longitude) of species occurrences based on direct observation, fecal
pellets, footprints, and resting sites were collected from Nepal, Bhutan,
India, and Pakistan. These occurrence data were randomly collected in
the potential habitat of the species in each country between 2013 and
2015. When the residuals of the model, after using all the available
occurrence points in modeling, were found to be auto-correlated
(Moran's I = 0.58, P = 0), they were filtered out to 52 independent
occurrence points by spacing them to a minimum of 6 km apart (see
Supplementary) as suggested by variogram plot (Dorman et al., 2007).
The species occurrence points used for modeling are assumed to
represent a full range of climatic conditions in the species' range as
those were collected across summer and winter seasons. For predictors,
19 bioclimatic variables with a resolution of 30″ (i.e., ~1 km spatial
resolution) from ‘WorldClim’ datasets (www.worldclim.org, Hijmans
et al., 2005) for two time periods, i.e. ‘current’ and ‘future’ were used.
‘WorldClim’ database consists of climate surfaces for global land areas
(except Antarctica) interpolated using the thin-plate smoothing spline
of observed climates at weather stations. For future scenario, the
database consists of projected climate for the years 2050 and 2070,
with four different levels of greenhouse gas scenarios, i.e. Representa-
tive Concentration Pathways (RCPs). Because of varying level of
greenhouse gas concentrations predicted for future and their inherent
effect on climate, average climatic surfaces data from three randomly
selected “Global Circulation Models” for 3 scenarios (scenario
1 = RCP2.6, scenario 2 = RCP4.5, scenario 3 = RCP8.5) for the year
of 2050 were used for projecting the future geographic range of the
species. ‘scenario 1’ (i.e., scenario that targets to limit the increase of
global mean temperature to 2 °C, see van Vuuren et al., 2011) and
‘scenario 3’ (i.e., scenario without climate mitigation target, see Riahi
et al., 2011) represent two extreme cases of radiative forcing while
‘scenario 2’ represent a modest level (i.e., scenario under climate
policy) between ‘scenario 1’ and ‘scenario 2’. Spearman's correlation
coefficients among the 19 bioclimatic variables in the database were
determined, and when the correlation coefficient between the variables
was found to be≥ |0.9|, only one variable from a set of highly
correlated variables was used to reduce the problems due to multi-
collinearity (Dormann et al., 2013) (see Supplementary). So, of the 19
bioclimatic variables, 10 bioclimatic variables were used as inputs in
modeling processes: annual mean temperature, mean diurnal range,
isothermality, temperature seasonality, mean temperature of wettest
quarter, annual precipitation, precipitation of driest month, precipita-
tion seasonality, precipitation of warmest quarter, and precipitation of

coldest quarter.

2.2. Modeling algorithms

Maxent (version 3.3.3 k; http://www.cs.princeton.edu/~schapire/
maxent/; Phillips et al., 2006) and GARP (desktop GARP in open
Modeller; Muñoz et al., 2009) were employed as the modeling algo-
rithms. Both the processes use known occurrences and pseudo-absences
data re-sampled from the area (i.e., set of pixels) within the extent of
concern where the species of question is not known to occur. Maxent
estimates an unknown probability distribution for occurrence of the
species based on the principle of maximum entropy, i.e. it searches for
the set of pixels within the study area with environmental character-
istics closest to average of the known occurrences (for details about
Maxent, see Phillips et al., 2006). Although widely used for modeling
species distribution, Maxent appears to suffer the issues of optimal
threshold selection and inadequate ability to transfer the model to
novel geographic situations (i.e., issue of under-predictions) as noted by
Phillips et al. (2006), and also discussed by Peterson et al. (2007), and
Royle et al. (2012). GARP on the other hand works in an iterative
process of rule selection, evaluation, testing, and incorporation or
rejection of the rule based on predictive accuracy from one iteration
to the next, i.e., GARP discerns the set of pixels within the study area
via evolution of ‘if/then’ rule to maximize predictivity based on the
environmental characteristics of known occurrences (for details about
GARP, see Stockwell and Peters, 1999; Peterson and Vieglais, 2001).
However, GARP faces issues of poor performance compared to Maxent
regarding interpolation of gaps in between the known occurrences
(Peterson et al., 2007), and inability to produce unique solution owing
to stochastic elements in the algorithm (typical for most machine
learning algorithms) (Stockwell and Noble, 1992). With this informa-
tion in mind, the study generated a final climatic niche map of
Himalayan musk deer by combining the maps obtained by each of
these two techniques for different scenarios. By so doing, it is expected
that the predicted climatically-suitable habitat distribution map of the
species is more robust and relatively accurate.

For pseudo-absences, Maxent selected only areas with presence
locations (i.e., countries with occurrence records) to limit the points to
areas that were surveyed for the species, potentially providing the
background samples with the same bias as presence locations (Elith
et al., 2011). The model was run 50 times, and hence the output of
Maxent is an average of 50 replications. Continuous raster map
produced with pixel-value ranging 0–1 for habitat suitability was
exported to ArcGIS version10.4 (www.esri.com), and a binary map of
climatically-suitable and unsuitable areas was created using ‘minimum
training presence logistic threshold’ (value = 0.15).

To handle the variability in models produced by GARP, 3 models
were created for each scenario and a composite binary map of
climatically-suitable and unsuitable habitat was created where pixels
predicted present by at least 2 models were considered “predicted
presence” (Anderson et al., 2002; Lim et al., 2002). Lowest training
presence threshold was used in GARP for model projection to produce a
suitability map. Lastly, a final map was produced by summing up the
binary maps generated from each of the modeling processes.

Table 1
Geographic area in km2 forecasted as climatically-suitable by Maxent, GARP and their
combinations for different scenarios considered in the study.

Current Scenario 1
(RCP2.6)

Scenario 2
(RCP4.5)

Scenario 3
(RCP8.5)

Maxent 2,093,355 2,420,323 2,817,101 1,833,021
GARP 1,184,062 1,477,732 1,853,504 1,594,683
Combined 2,522,094 2,890,376 3,251,760 2,537,413
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