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A B S T R A C T

Open-source species locality data are widely used in species distribution modeling but may be spatially biased by
uneven sampling effort across a species' range. Spatial biases may vary across ecological trait groups if traits
affect associations with landscape features and capture probability. Furthermore, spatial biases may change
across time as research priorities, funding, and methodologies change, which may confound modeling of
temporal changes in distributions. We used locality records from 93 bat species from the Global Biodiversity
Information Facility to characterize the differential contribution of bias variables to spatial bias and how
contribution varied across ecological trait groups. Next, we examined how historical changes in protected area
proliferation, economic development, and sampling method advancement affected protected area and university
biases. Roosting and foraging traits influenced spatial bias, but distance to protected areas was the greatest
contributor to spatial sampling bias in a pooled model and 8 out of 10 ecological trait group models. Over time,
distance to protected areas significantly decreased following protected area proliferation, but economic
improvement did not influence distance to universities. Sampling method advancements increased protected
area bias for two out of three foraging groups. Although sampling effort has increased over time, effort is
becoming more biased towards protected areas, which may not encompass the entirety of species' ranges or
allow for equal sampling across taxa. Characterizing spatial bias differences among species and across time
clarifies underlying causes of spatial bias, information that can be leveraged to improve spatial bias correction.

1. Introduction

Biodiversity researchers have urged the global scientific community
to prioritize biological data acquisition to improve knowledge of
species distributions and better support conservation assessments
(Guralnick and Hill, 2009; Wilson, 1988). Despite advances in the
digitization, collation, and mobilization of species distribution data,
precise, accurate, and well-distributed locality data are still lacking for
most taxa. As a consequence, the availability of high-quality species
distribution data lags behind the availability of explanatory environ-
mental data such as topography, land cover, and climate (Beck et al.,
2012; Costello et al., 2013; Jetz et al., 2012). Open-source locality data
underpin the majority of recent presence-only species distribution
models, which predict and map the probability of species occurring
across a defined area using presence records (versus those models that
use presence and absence) and maps of environmental conditions (Elith
et al., 2006). Species distribution models have become a popular tool in
ecological and conservation research because they provide geographic

range estimates for data deficient species and can model distributional
changes caused by anthropogenic landscape changes and climate
change (Guisan et al., 2013; Porfirio et al., 2014; Rebelo and Jones,
2010; Wilson et al., 2011). However, when source data are collected
and/or collated using an unsystematic method, they may have temporal
or spatial biases (Ballesteros-Mejia et al., 2013; Boakes et al., 2010;
Isaac and Pocock, 2015; Newbold, 2010; Yang et al., 2014).

Spatial biases can negatively affect presence-only species distribu-
tion models (Barry and Elith, 2006; Phillips et al., 2009; Rondinini
et al., 2006; Syfert et al., 2013) because species presence probabilities
become more heavily influenced by sampling effort than species
ecology. Thus it has become standard practice to correct for spatial
biases in presence data, but prevalent techniques (e.g., spatial filtering
and background manipulation) do not require knowledge of the extent,
magnitude, or causes of spatial bias. For example, spatial filtering is a
random process whereby the number of records found within a certain
size grid cell is limited to a predetermined number. Background
manipulation changes pseudo-absences in the model to match biases
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seen in similarly distributed but non-target species (Dormann et al.,
2007; Phillips et al., 2009). Spatial filtering and background manipula-
tion both assume that all locality data are similarly biased throughout
space and time, and that all biases negatively affect distribution
modeling. This may be a false assumption. For example, Kadmon
et al. (2004) found that plant localities occurred more frequently near
roads but that this bias did not have a significant effect on distribution
models.

In species distribution models, spatial bias generally arises when
sampling extent and effort are influenced by geographic features.
Geographic causes of spatial sampling biases have been intensively
studied. Unsurprisingly, features that promote researcher presence,
such as protected areas, road access, cities, population density,
university presence have been shown to increase density of sampling
localities and species inventory completeness (Botts et al., 2011;
Ficetola et al., 2014; Freitag et al., 1998; Kadmon et al., 2004; Martin
et al., 2012; Reddy and Dávalos, 2003; Yang et al., 2014). In contrast,
ecological causes of spatial bias have been less studied. Ecological traits
may influence spatial sampling bias, as traits can affect capture rates
and location. For example, in Freitag et al. (1998), small terrestrial
mammal locality data were biased towards roads whereas large
mammals and bats were more biased by distance to protected area.
Schmidt-Lebuhn et al. (2013) documented that plant morphology,
flowering phenology, and invasion history biased collecting by re-
searchers. Thus we can see that ecology has an effect on taxonomic and
spatial sampling biases but hypotheses that explore the connection
between ecology, methodology, and biases have not been tested.

Temporal variation in spatial biases is a direct reflection of how
sampling extent, effort, and methodology changes through time.
Methodological advancements pave the way for an increase in the
magnitude, geographic extent, and taxonomic diversity of sampling
effort. New methods allow for sampling in previously inaccessible areas
and data deficient species to be captured or observed. However,
methodological improvements may also lead to taxonomic biases in
sampling effort if methods have differential capture success across taxa,
trait groups, or environments (Kingston, 2013). For example,
MacSwiney et al. (2008) found that current capture methods fail to
sample major portions of the bat fauna, including an entire foraging
group, because of differential capturability caused by ecological trait
differences among species and habitat differences across the landscape.
Furthermore, drivers of temporal changes in spatial bias are also poorly
understood. This is important because temporal variation in spatial
structure of data can result in a reduction of accuracy in the description
of a species' niche space (Aguiar et al., 2015; Hortal et al., 2008), and
this has consequences for tests of temporal hypotheses regarding
distribution shifts (Lobo et al., 2007). Hypothesized causes of the
temporal variation in data structure are researcher preference (Lobo
et al., 2007), ecological niche bias (Aguiar et al., 2015), and clustering
around protected areas (Boakes et al., 2010), but these have not been
explicitly tested.

Our overall objective was to characterize the origins of spatial
sampling bias and how those origins are affected by ecology and
geography and change over time. First, we hypothesized that the
sources of spatial bias origins should vary across ecological trait groups.
We used MaxEnt (maximum-entropy) modeling to assess the differen-
tial contribution of ease-of-access features and human demography to
ecological trait group models. We selected six related variables
(distance of the sampling locality to nearest protected area, distance
to university, distance to road, population density, night-time light
intensity, and land cover) to encompass well-known and expected
causes of spatial bias. Second, we hypothesized that temporal changes
in protected area conservation, economic development, and sampling
method advancement would affect spatial sampling bias by increasing
or decreasing distance to protected areas and universities. Lastly, we
hypothesized that changes in bat sampling methods may lead to
temporal changes in taxonomic bias in sampling effort because methods

have differential capture success across taxa, trait groups, or environ-
ments.

We investigated spatial sampling bias in Southeast Asian bat
species, a mammalian order underutilized in species distribution
research (Razgour et al., 2016). Compared to other taxa examined for
spatial bias, such as butterflies and birds, bats are cryptic, traditionally
“uncharismatic”, and normally require specialist knowledge to catch
and identify. Consequently, bats lack historical documentation by
naturalists and lag behind other taxa (e.g. birds) in current efforts to
monitor species through citizen science projects (but see Jones et al.,
2013). It has been hypothesized that these factors contribute to
temporal and spatial changes in biases; however since bats have not
been influenced by these factors, we theorized that this taxon may
exhibit different spatial bias patterns. Indeed, Freitag et al. (1998)
found that sampling of African bats exhibited similar spatial bias to that
of large carnivores rather than similar-sized terrestrial mammals, but
the cause of this pattern was not examined further. Finally, bats in
Southeast Asia are of conservation concern due to rapid deforestation
and unregulated hunting. It is predicted that 53% of bat species in this
region will go extinct by 2100 if there is not a reduction in threats (Lane
et al., 2006). A lack of regional data on bat distributions is considered a
major conservation impediment (Kingston, 2010), so developing accu-
rate species distribution model is critical for conservation planning.

2. Methods

2.1. Locality data collation and study species

Bat locality data were downloaded from the Global Biodiversity
Information Facility (GBIF) (www.gbif.org, accessed April 2015) and
limited to the 11 Southeast Asian countries of Malaysia, Indonesia,
Philippines, Brunei, Thailand, Cambodia, Myanmar, Laos, Vietnam,
Singapore, and Timor-Leste (Fig. 1). Data without date information or
missing or obviously erroneous geographic coordinates were excluded
from analysis, which yielded 27,347 records representing 248 species
with a temporal range of 1887–2015. Location and species duplicates
were removed for analyses resulting in 1471 species independent
unique locations.

Currently, there are at least 340 species of bats known in Southeast
Asia (Kingston, 2013; Simmons, 2005); however we did not use all
species in the analysis. We selected species from the top five most
abundant genera (in GBIF) in each family or subfamily and then further
reduced selection to the five or six most abundant species in each genus.
We chose this selection procedure to create a more manageable list of
species (93) that still covered the spectrum of bat taxonomic and
ecological diversity (Table A.1).

2.1.1. Ecological trait groups
We organized bat localities into categories based on roost prefer-

ences, foraging ecology, and anthropogenic association. Record and
species prevalence across ecological trait groups was relatively even
except for open-space foragers (Fig. A.1), which are the hardest
ecological group to capture because they fly too high to be caught in
nets. Categorizations were based on ecological information provided in
IUCN Red List Assessments (2016) and expert opinion. Bats in Southeast
Asia can be grouped by natural roost preference, as those that roost
exclusively in caves, those in tree cavities and foliage, and those that
can use either (generalists). For foraging ecology, we first separated
plant-visiting bats from insectivorous species, and then split the
insectivorous bats into groups based on their ability to capture prey
in cluttered environments (such as the dense vegetation of a rainforest)
(Schnitzler and Kalko, 2001). Plant-visiting foragers are a separate
group, as they do not have the same connection between morphological
characteristics and clutter navigation because they predominantly use
sight to forage and lack laryngeal echolocation. Thus, we examined four
foraging categories: cluttered-space (hunting insects inside dense
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