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a  b  s  t  r  a  c  t

As  one  of the  factors  to represent  some  species  of  algae,  chlorophyll  dynamics  model  has  been  regarded
as one  of the early-warning  proactive  approaches  to prevent  or mitigate  the  occurrence  of  some  algal
blooms.  To  decrease  the  cost  of aquatic  environmental  in-situ  monitoring  and  increase  the  accuracy
of  bloom  forecasting,  a traditional  artificial  neural  network  (ANN)  based  chlorophyll  dynamics  predic-
tion  model  had  been  optimized.  This optimization  approach  was  conducted  by presenting  the  change
of  chlorophyll  value  rather  than  the  base  value  of  chlorophyll  as the  output  variable  of  the  network.
Both  of the  optimized  and  traditional  networks  had  been  applied  to  a  case  study.  The  results  of model
performance  indices  show  that  the optimized  network  predicts  better  than  the  traditional  network.
Furthermore,  the  non-stationary  time  series  was  employed  to explain  this  phenomenon  from  a  theoret-
ical aspect.  The  proposed  approach  for chlorophyll  dynamics  ANN model  optimization  could  assist  the
essential  proactive  strategy  for  algal  bloom  control.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

It has been widely reported that lakes and reservoirs are com-
monly susceptible to eutrophication, and the subsequent algal
blooms result in an adverse effect on the drink water security
(Gu et al., 2017). Due to the adverse effect on the water quality,
the eutrophication induced algal blooms can disrupt water supply
to the surrounding cities (Zhang et al., 2014). Traditionally, algal
blooms in-situ management programs require routine monitoring
and/or reactive monitoring whereby blooms are monitored episod-
ically and at a greater frequency only when a problematic algal
species are detected, or a bloom is visually observed (Coad et al.,
2014). These programs have limited capacity for environmental
managers to adequately monitors and respond to algal blooms due
to constraints such as (i) the expense of field monitoring, (ii) staffs
availability and resources, (iii) field safety issues, and (iv) large
time intervals between data collection, reporting and public noti-
fication. Therefore, to decrease the cost of aquatic environmental
in-situ monitoring and increase the accuracy of blooms forecasting,
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an early-warning proactive approach of the algae blooms forecast-
ing model is essential to prevent or mitigate the occurrence of algal
blooms, and eventually facilitate the minimization of the adverse
effect of algal blooms on the water bodies (Oh et al., 2007).

In terms of the model development, there are typically two kinds
of forecasting models: deductive models and inductive models.
The deductive models are developed based on the existing theo-
ries and knowledge which enable users to simulate the systems’
behavior (Recknagel, 1997). Many deductive models have been
proposed to predict the algal blooms. For example, Grover (1991)
built a mechanistic deductive model by considering the theoretical
elements needed for algae growth. Wei  et al. (2014) used a cou-
pled hydrodynamic-algal biomass model to forecast the short-term
cyanobacteria blooms in Taihu Lake, China. Except for the wide
application, however, deductive models require detailed descrip-
tions of physical, chemical and biological processes, and usually
contain a lot of parameters for calibration (Zhang et al., 2014). To
a great extent, therefore, the prediction accuracy was  restricted by
the lacking of knowledge about the algae-growth mechanism and
chlorophyll dynamics.

In terms of the inductive models, they produce holistic infor-
mation extracted from the empirical data patterns by statistic,
correlation and machine learning methods which enable users to
predict rather than to explain the systems’ behavior (Recknagel,
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1997; Zhao et al., 2016). Jeong et al. (2003) modeled microcystins
aeruginosin bloom dynamics in Nakdong River by means of evo-
lutionary computation and statistical approach. Cha et al. (2014)
reported a Bayesian Poisson model to probabilistically predict the
Cyanobacteria abundance in a Korean reservoir.

Among these inductive models, artificial neural network (ANN)
is a kind of model which could deal with the complex infor-
mation among the data by using machine learning theories. For
normal forward neural networks, their structures include input-
layer, hidden-layer, and output-layer. There are multiple neurons
in each layer, and each of them is assigned with two parame-
ters, namely weight value and the threshold value. By training
ANN with enough samples obtained from the history of a nat-
ural system, these parameters can be adjusted to reproduce the
behavior of this system (Ethem, 2010). ANN has been applied to the
algae blooms and chlorophyll dynamics forecasting in the last two
decades. For example, ANN was used for modeling and prediction of
algal blooms (Recknagel et al., 1997) and also for modeling and pre-
diction of zooplankton dynamics in Lake Kasumigaura (Recknagel
et al., 1998). In Huelva, Western Andalucia, Spain, ANN was adapted
for one-step weekly prediction of Dinophysis Acuminata blooms
(Velo-Suárez and Gutiérrez-Estrada, 2007).

The ANN model was also applied on chlorophyll dynamics, as it
is one of the factors to represent some species of algae and has been
regarded as one of the early-warning proactive approaches to pre-
vent or mitigate the occurrence of some algal blooms. To improve
the understanding of chlorophyll dynamics, Coad et al. (2014) used
ANN to predict daily Chlorophyll-a concentration. In a case study
on the Yuqiao Reservoir in North China, an ANN was employed
for the eutrophication forecasting and management (Zhang et al.,
2015). Despite its successful application, it is stressed that the opti-
mal  ANN is generally problem dependent (Maier and Dandy, 2000;
Recknagel, 2001). For this reason, it is necessary to develop and
optimize the ANN for different problems to obtain the best model
configurations that have a lower error with short training time and
higher accuracy. Traditionally, an optimal ANN model was found
by trial and error with adjusting of its structures and parame-
ters (Maier and Dandy, 2001; Dedecker et al., 2004). However, it
is difficult to find the optimal set of the possible structures and
parameters. Therefore, a new method for developing and optimiz-
ing ANN models with the easier operation to predict chlorophyll
dynamics is needed.

In terms of the chlorophyll dynamics, it has been widely recog-
nized that the water quality, hydrology, and climate condition are
the main influencing factors on the chlorophyll dynamics (Coad
et al., 2014; Seitzinger, 1991). Compared with the base value of
chlorophyll (refers to the value at the beginning of a period used as
a reference or starting point for the estimation process), the value
change of chlorophyll (refers to the difference between the size of
the value to the end and the beginning of a period) is more sensitive
to these influencing factors. In other words, the influencing factors
will first determine the value change of chlorophyll, and then influ-
ence the base value of chlorophyll within a given time period. Thus,
the primary hypothesis of this study is that the ANN based chloro-
phyll dynamics prediction model could be optimized by computing
the correlations between the value change of chlorophyll and its
influencing factors rather than the correlations between the base
value and the influencing factors.

Consequently, the objectives of this study were to (i) explore
a method to optimize ANN based chlorophyll dynamics predic-
tion model, (ii) apply this optimized model and forecast daily
Chlorophyll-a concentrations in a water body, and (iii) compare
the accuracy of the optimized model with a traditional ANN based
chlorophyll dynamics prediction model.

Fig. 1. Structure of an ANN model.

2. Materials and methods

2.1. Theory of ANN model

ANN applied in this study consists of an input layer with p+1
nodes, a hidden layer with N nodes, and an output layer with one
node as given in Fig. 1. p is the number of variables which depends
on different the model designing. The number N is subjected by Eq.
(1) as follows.

N ≤ NTR(
NI + 1

) (1)

where, N is the nodes number in the hidden layer; NTR is the number
of training samples; and NI is the number of inputs. There are mainly
two kinds of transfer functions for each node, i.e.: the log sigmoid
as shown in Eq. (2) and the tangent sigmoid as shown in Eq. (3). In
this study, the tangent sigmoid was  chosen as the transfer function
for the hidden layer nodes and the output layer nodes.

ϕ0 = log sig (x) = 1
1 + exp (−x) (2)

ϕh = tan sig (x) = 2
1 + exp (−2x)

− 1 (3)

The connections among nodes in each layer are represented by
the weights (W (input) and W (output)) and thresholds (b1 and b2).
The initial values of weights are determined by a random starting,
and randomly set between −1 and 1. Thresholds are correspond-
ing with inputs which are set randomly between −1 and 1 at the
beginning. Then the weights and thresholds are adjusted by train-
ing with samples. If let functions ai (t) , i = 1, . . .,  p as the inputs of
ANN, and let function f (t) as the output of ANN, t is time variable.
Then the model is represented by the following equations:

f (t)N = ϕh{
N∑
j=1

W(output)j · ϕh[

p∑
i=1

W(input)ij · IiN (t) + b1j] + b2}

(4)
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