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a  b  s  t  r  a  c  t

Evaluating  the  conditions  where  a species  can persist  is an important  question  in ecology  both  to  under-
stand  tolerances  of organisms  and  to  predict  distributions  across  landscapes.  Presence  data  combined
with  background  or pseudo-absence  locations  are  commonly  used  with  species  distribution  modeling
to  develop  these  relationships.  However,  there  is not  a standard  method  to generate  background  or
pseudo-absence  locations,  and  method  choice  affects model  outcomes.  We  evaluated  combinations  of
both model  algorithms  (simple  and  complex  generalized  linear  models,  multivariate  adaptive  regression
splines,  Maxent,  boosted  regression  trees, and  random  forest)  and  background  methods  (random,  mini-
mum convex  polygon,  and  continuous  and  binary  kernel  density  estimator  (KDE))  to  assess  the sensitivity
of  model  outcomes  to choices  made.  We  evaluated  six  questions  related  to model  results,  including  five
beyond  the  common  comparison  of model  accuracy  assessment  metrics  (biological  interpretability  of
response  curves,  cross-validation  robustness,  independent  data  accuracy  and  robustness,  and  prediction
consistency).  For  our case  study  with  cheatgrass  in  the  western  US,  random  forest  was  least  sensitive  to
background  choice  and  the  binary  KDE  method  was  least  sensitive  to model  algorithm  choice.  While  this
outcome  may  not  hold  for other  locations  or species,  the  methods  we used  can  be  implemented  to  help
determine  appropriate  methodologies  for particular  research  questions.

Published  by  Elsevier  B.V.

1. Introduction

Understanding environmental conditions that allow a species
to persist has been a fundamental question in ecology (Grinnell,
1917; Hutchinson, 1957; Soberón, 2007) and continues to be a
pressing conservation priority. As originally described, the Grinnel-
lian or fundamental niche considered a series of scenopoetic (i.e.,
abiotic) conditions that allowed for a species to persist (Grinnell,
1917; Hutchinson, 1957). However, Hutchinson (1957) and others
recognized that biotic interactions, such as competitive exclu-
sion, resulted in a species rarely utilizing its entire fundamental

∗ Corresponding author.
E-mail address: jarnevichc@usgs.gov (C.S. Jarnevich).

niche, referring to this smaller occupied space as the realized niche
(Pulliam, 2000).

There has been a recent proliferation in the application of
species distribution models (hereafter SDMs) in the ecological
literature partly in response to the large availability of species
occurrence data (Anderson, 2012) and spatial datasets (e.g., Porter
et al., 2012), but also in part due to the increase in development
and application of multiple SDMs (Zimmermann et al., 2010). SDMs
attempt to understand the niche conditions (typically realized
niche) that allow a species to persist, contrasting known presence
locations with either known absence locations or some represen-
tative sample of potential available locations across space that
characterize the range of environmental conditions available to
the species, alternatively called background, available, or pseudo-
absence locations. We  will use the term ‘background’. Presence data
are often the only data collected and available (i.e., no absence data;
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Soberon and Peterson, 2005), especially over large spatial extents
for which the time and cost to adequately sample is prohibitive,
and for poorly sampled parts of the world. In these cases, SDMs
are limited to those methods that only use presence information to
define the niche (e.g., Ecological Niche Factor Analysis; Hirzel and
Arlettaz, 2003) or background methods.

Several choices must be made during development of SDMs that
can influence results, and there is not a quantitative methodology
to direct decisions. Alternative choices add uncertainty to predic-
tions, some of which can be quantified by comparing alternatives. In
these studies that partitioned uncertainty among various choices,
comparisons were made between modeling algorithm selection,
location data choice and accuracy, predictor choice, climate change
scenarios, method to control for collinearity in predictors, and
variable selection method (e.g., Diniz-Filho et al., 2009; Dormann
et al., 2008). Previous analyses of quantifiable uncertainty in model
predictions highlight that modeling algorithm is often one of
the greatest sources of uncertainty (e.g., Diniz-Filho et al., 2009;
Dormann et al., 2008).

The practice of generating background locations is a form of a
priori definition of the area accessible of a species, akin to prior
selection of (independent) predictor variables, making careful and
informed consideration of the background sample region essen-
tial to interpretable and useful results when models are used to
extrapolate beyond sample units. The selection of background loca-
tions in presence-background SDMs is a subject of ongoing debate
because this decision can affect model estimates (e.g., Phillips
et al., 2009) and inflate model evaluation statistics (e.g., Rodda
et al., 2011), but has not been included in the analyses of parti-
tioning uncertainty described above. Regardless of the approach,
selection should be related to the biological question of interest
when defining the niche conditions for a given species. Several
background point selection approaches have been explored, but
so far no consistent, optimally performing method has emerged.
To generate background points both the extent within which
points will be generated and how points are placed within the
extent should be addressed. Three main considerations apply to
these decisions, including the biology of the species, the questions
being asked and the potential sampling bias that often exists in
presence-only datasets. Many earlier SDM studies selected back-
ground points randomly from the entire extent of the study area
(e.g., Elith et al., 2006; Phillips et al., 2006). For applications using
herbaria and museum data, research suggests targeted background
or inventory pseudo-absence approach (e.g., Elith and Leathwick,
2007; Phillips et al., 2009), thereby comparing observations (col-
lections) to the “full range” of environmental conditions in the
target region. If doing so encompasses a range of unsuitable condi-
tions for the species of interest, model prediction success would be
high, but biological understanding of the niche requirements for
the species would not be enhanced (e.g., temperate regions pre-
dicted unsuitable for tropical species). Thus, linking background
sampling to the question of interest and understanding implica-
tions of the background method is imperative. Additionally, for
datasets aggregated from disparate sources, such as multiple, inde-
pendent survey or mapping efforts, target background locations
may  not be available and the aggregated location data may  be
clustered geographically (e.g., spatially disparate clusters repre-
senting disparate mapping efforts). This resulting sample selection
bias can reduce the accuracy of SDMs (see Fourcade et al., 2014).
Thus it is important to explore the impact of background selec-
tion on model results because these locations will influence model
results.

Building upon the efforts of Barbet-Massin et al. (2012) who
examined background selection uncertainty, our goal was to inves-
tigate the effects of a broader spectrum of background methods
to evaluate the spatial extent and the spatial placement of avail-

able locations within that extent on predictions of SDMs using a
‘real’ dataset rather than a virtual species. Previous work highlights
the importance of testing background selection methods for each
dataset rather than a best method for all species-geographic extent
combinations, and we  outline a process to evaluate the effects of
methods to select background points in conjunction with differ-
ent SDMs. We  evaluated six different SDMs of varying complexity
using four different background-selection methods. Although there
are many more algorithms commonly used and other methods
to select background locations, we felt that this set of 24 pairs
was enough to demonstrate the methodology. Our purpose was
not to say what the ‘best’ pairing was but rather to evaluate a
methodology to choose a pairing that minimized the effects of sub-
jective decisions on model results. We  explored random placement
within the study area, random placement within a minimum con-
vex polygon defined by presence data, random placement within
a region defined by a kernel density estimator (KDE), and place-
ment weighted by density of presence locations through a KDE
(Fig. 1).

To conduct this assessment, we required a readily available
dataset depicting the presence of a species across a large spa-
tial extent, where existing covariates were available spatially.
Modeling the distribution of cheatgrass (Bromus tectorum), an
exotic invasive grass, is a good test candidate for this exer-
cise because previous conservation and management efforts have
resulted in an abundance of location data across the USA. Man-
agement concerns and challenges associated with the species
indicate a clear need to better understand the current and poten-
tial influence of this species on wildlands and wildlife habitats
at local and continental scales (Miller et al., 2011). Given a bet-
ter understanding of environmental factors that affect cheatgrass
distribution and abundance, land managers may  focus limited
resources on areas with the greatest threat, susceptibility, or
both. Regional models also provide a link to scenario model-
ing efforts (i.e., application of climate and land-use scenarios) to
support planning for potential future conditions. Importantly, to
be useful for management and planning, models must represent
“reality” observed by field managers and biologists. Analytically
elegant, but inaccurate models may  have little practical value.
Therefore, this project presents results from our efforts to refine
and improve regional SDM for conceptual and practical applica-
tions.

2. Materials and methods

2.1. Location data

We processed data within the VisTrails (Freire et al., 2006) Soft-
ware for Assisted Habitat Modeling package (SAHM v 1.1; Morisette
et al., 2013). We  compiled cheatgrass point location data for the
western USA from a variety of sources, resulting in 36,971 loca-
tions (Supplementary Table 1), reduced to 16,651 unique locations
within 230 m resolution pixels. This cell size (230 m)  was  selected
to facilitate integration of datasets derived from Moderate Reso-
lution Imaging Spectroradiometer (MODIS). For model evaluation
we obtained two  independent datasets of cheatgrass presence and
absence for a region of southwestern Wyoming (907 presence;
4882 absence) and a region in north central Nevada (360 presence;
204 absence; Supplementary Table 1).

We generated background locations equal in number to our
presence locations to use in model development, following advice
of Barbet-Massin et al. (2012) to have a large number of back-
ground points with equal weight to the presence locations and
results from preliminary tests we  conducted. In these preliminary
analyses we  examined histograms for each potential predictor vari-
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