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a  b  s  t  r  a  c  t

In  matrix  population  models,  there  cannot  be  any  ‘reproductive  uncertainty’  when  the life  cycle  graph
contains  only  one  reproductive  stage.  Otherwise,  it is  logical  to  expect  that  aggregating  all  the reproduc-
tive  stages  into  a  single  one  would  exclude  the  very  basis  of uncertainty.  However,  can  the  aggregation
change  principally  the  model  characteristics  such  as  the  dominant  eigenvalue  �1 of the  projection  matrix,
thus  signifying  the  aggregation  failure?  I  demonstrate  that  it can with  the  data  mined  in  a  case  study  on
the  dynamics  of  a local  stage-structured  population  of  Eritrichium  caucasicum,  a  short-lived  perennial
plant  species  inhabiting  an  alpine  lichen  heath.  Frobenius  Theorem  for  nonnegative  matrices  specifies
the  upper  and  lower  bounds  for �1 via  the  row  (or  column)  sums  of matrix  elements,  and  the  lower
bound,  when  it exceeds  the  maximal  possible  �1 of  the  original,  disaggregated  matrix,  does  explain  why
the aggregation  may  fail  to eliminate  reproductive  uncertainty.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

‘Reproductive uncertainty’ is a problem of the ‘identified indi-
viduals with uncertain parents’ type of population data (Logofet,
2013a), so typical for botanical case studies (Logofet, 2016). The
studies were focused on developing matrix population models for
the dynamics of local single-species stage-structured populations,
where the stage can be determined for each individual plant on a
permanent sample plot. The standard form of a discrete-structured
population model is given by a vector-matrix equation

x(t + 1) = Lx(t),t = 0, 1, . . .,  (1)

where x(t) is an nD vector of the population structure at time
moment t and an n × n matrix L is called the projection matrix
(Caswell, 1989, 2001). The pattern of nonzero elements allocation in
matrix L can be represented as the associated directed graph (Harary
et al., 1965; Horn and Johnson, 1990), which coincides with the
life cycle graph (LCG, Logofet and Belova, 2008) for individuals in
the population. The graph summarizes the knowledge of species
biology in terms of status-specific groups of individuals, with their
population sizes being represented by the components of vector
x(t). It shows all the transitions among status groups that are pos-
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sible for one time step; it also indicates which of the status groups
are reproductive, i.e., provide for the population recruitment, and
in which status groups the recruits may  appear at the time t + 1.
Correspondingly, the projection matrix is considered as the sum,

L = T + F, (2)

of its transition and fertility parts (Cushing and Yicang, 1994; Li and
Schneider, 2002).

The ‘identified individuals’ are the kind of ‘data in which individ-
uals are marked and followed over time’ (Caswell, 2001, p. 134), and
they enable calculating the elements �ij of matrix T directly from
the data as the ‘observed transition frequencies’ (ibidem). However,
the ‘unknown parents’ leave the stage-specific reproduction rates
(nonzero elements of F when there are two or more of them) uncer-
tain, yet constrained to a ‘recruitment balance equation’ (Logofet,
2008, p. 220, left)

x(t + 1) − Tx(t) = Fx(t). (3)

Here, the left-hand side is known from the data, as well the coef-
ficients at the uncertain reproduction rates in the right-hand side.
When the recruitment appears in the initial stage alone, matrix Eq.
(3) has only one (the first one) nontrivial linear component-wise
equation for more than one unknown rates. Such an equation can
generally not have a unique solution, which serves as the mathe-
matical reason of uncertainty.
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Table 1
Structures of the local E. caucasicum population over the years of observation.

Stage The sizes of stage groups in the year of observation

2009 2010 2011 2012 2013 2014

j 149 31 150 211 119 99
v  80 136 129 181 296 166
g  10 9 10 9 6 11
gt  4 1 3 7 1 4

adapted from Logofet et al., 2016

A number of tricks were proposed in the literature to cope with
the reproductive uncertainty (see Logofet, 2008, and references
therein). In particular, it was shown that the additional assumption
of maximal adaptation (i.e., the maximal possible �1 that conforms
to the data) leads to a constraint maximization problem that has a
unique solution (Logofet, 2013c). Whether the maximal-adaptation
hypothesis can or cannot be accepted is a matter of theoretical
discourse (Metz et al., 2008a,b; Gyllenberg and Service, 2011) and
that of expert judgement in each practical case. However, without
any additional hypotheses, matrix calibration results only in cer-
tain finite ranges for the unknown reproduction rates, hence in a
certain range, [�1min, �max

1 ], for the adaptation measure �1(L) rather
than an exact number. When the range lies entirely to the left or to
the right of �1 = 1, it does give a certain answer whether the popu-
lation declines or increases, but it does not when �1 = 1 falls inside
the range. Both cases did occur in modelling practice (Table 3 in
Logofet et al., 2016), leaving the issue open for further studies.

Meanwhile, among the tricks to eliminate reproductive uncer-
tainty there was a suggestion to deal with a single reproductive
group only (Akç akaya and Burgman, 1999), i.e., with a single
unknown to be found from the sole nontrivial element-wise equa-
tion of (3). Although this recipe looked like the wisdom to be
healthy but reach, it has prompted an idea to aggregate the life
cycle graph with a few reproductive stages to that with a single one.
Thereafter, the �1 of the aggregated matrix, Lag , becomes calcula-
ble uniquely, and it would be logical to expect that �1(Lag) gets into
the range of uncertainty for the original �1(L) values, thus finalizing
the estimation.

In the present communication, I report how this idea has been
verified for a time series of the ‘identified individuals with uncer-
tain parents’ data mined in a case study of a local stage-structured
population of Eritrichium caucasicum, an herbaceous short-lived
perennial species. The above expectation has turned out partially
true: most of �1s for the aggregated matrices, Lag(t), have fallen
pretty within the original ranges of uncertainty, but there has also
been an exception, a �1(Lag(t)) beyond the original range [�1min(t),
�max

1 (t)]. There is a mathematical reason for such an exception,
and I propose an efficient condition to see a priori whether the
aggregation would fail in eliminating the reproductive uncertainty.

2. Eritrichium caucasicum case study

Fig. 1 presents the LCG for a local population of Eritrichium cau-
casicum, a short-lived perennial plant inhabiting an alpine lichen
heath. Seeds germinate each spring to seedlings, then mature suc-
cessively to juvenile, virginal, and generative stages, where they
produce seeds. Severe wintering conditions cause some of gen-
erative plants to not flower in the upcoming season, and this
phenomenon causes the backward transition va ←− g to appear in
the LCG. Botanists can distinguish between the plants at the gener-
ative stage and those at the terminal generative stage, after which
the plants die out. Thus, two generative stages provide for the pop-
ulation recruitment at the initial stage, but no method is available
to distinguish between the progenies from those two  stages. Repro-
ductive uncertainty is therefore inevitable in this case, even for the

Fig. 1. LCG for a local population of Eritrichium caucasicum: j denotes young plants
(seedlings and juveniles); v virginal plants and the adult non-flowering ones, g –
generative plants; gt terminally generative plants. Solid arrows indicate ontoge-
netic transitions occurring for one year (the lack of transition, in particular); dashed
arrows correspond to annual recruitment (Logofet et al., 2016).

Fig. 2. LCG for E. caucasicum with two generative stages aggregated to a single one,
ga.

‘identified individuals’ type of data, which were mined by means
of annual censuses on permanent sample plots in the period of
2009–2014 (Logofet et al., 2016).

The projection matrix takes on the following form:

L = T + F =

⎡
⎢⎢⎣

0 0 0 0

c d e 0

0 f h 0

0 k l 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 a b

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦ , (4)

with two uncertain reproduction rates, a and b, constrained by the
‘recruitment balance equation’

j(t + 1) = a g(t) + b gt(t), t = 0, 1, . . . , 4, (5)

where j(t + 1), g(t), and gt(t) are all known from the data (Table 1).
Known also are all the transition matrices T(t) calibrated in
the rational numbers as the observed frequencies of transitions
(Table 2).

Now, aggregating the generative stages into a single one, ga,
results in the LCG shown in Fig. 2. The corresponding matrix Lag

reduces to

Lag =
[

0 0 0
c d ê

0 f + k ĥ

]
+

[
0 0 â
0 0 0
0 0 0

]
,

and the vector, y(t), of the aggregated population structure takes
on the form of

y(t) = [j (t) , v (t) , ga (t)]T, (6)

where ga(t) = g(t) + gt(t) is evident from Table 1. The annual num-
ber of recruits remains obviously the same, hence j(t + 1) = â[g(t) +
gt(t)], whereby the new reproduction rate is recalculated from
Table 1 as

â(t) = j(t + 1)/[g(t) + gt(t)], t = 0, 1, . . . , 4. (7)
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