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a  b  s  t  r  a  c  t

Species  distribution  modeling  aimed  at forecasting  the  spread  of invasive  species  under  projected  global
warming  offers  land  managers  an  important  tool  for assessing  future  ecological  risk  and  for  prioritiz-
ing  management  actions.  The  current  study  applies  Bayesian  inference  and  newly  available  geostatistical
tools  to  forecast  global  range  expansion  for the  ecosystem  altering  invasive  climbing  fern  Lygodium  micro-
phyllum.  The  presented  modeling  framework  emphasizes  the  need  to account  for  spatial  processes  at
both  the  individual  and  aggregate  levels,  the  necessity  of  modeling  non-linear  responses  to  environ-
mental  gradients,  and  the explanatory  power  of biotic  covariates.  Results  indicate  that  L. microphyllum
will  undergo  global  range  expansion  in concert  with  anthropogenic  global  warming  and  that  the species
is  likely  temperature  and  dispersal  limited.  Predictions  are  undertaken  for current  and  future  climate
conditions  assuming  both  limited  and  unlimited  dispersal  scenarios.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Invasive plants pose a major threat to the biological integrity
of the world’s native natural communities (Pysek et al., 2012;
Wilcove et al., 1998; Allen and Bradley, 2016). Non-indigenous
plants adversely effect the suitability of habitat for native wildlife,
disrupt successional trajectories, alter disturbance patterns, and
compete with native plants for access to light and other resources
(Gordon, 1998; Ehrenfeld, 2010; Pysek et al., 2012; Olden et al.,
2004; McKinney and Lockwood, 1999). Exacerbating the effects of
invasive plants, rising temperatures resulting from anthropogenic
climate change may  increase the risk, extent, and intensity of inva-
sion by non-indigenous species (Rogers and McCarty, 2000; Bradley
et al., 2010; Ayllón et al., 2013; Hulme, 2016). Because prevention is
the less costly and more effective alternative to post-invasion treat-
ment, intervention at the onset of, or prior to, infestation by invasive
plants is the most viable and economically sound approach to safe-
guarding native function and diversity (Leung et al., 2002; Hulme,
2016; Hobbs et al., 2006). For these reasons, species distribution
modeling (SDM) aimed at predicting the range of non-indigenous
species under projected climate warming offers land managers an
important tool for assessing invasion risk and for prioritizing man-
agement actions (Buckley, 2008).
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SDM is increasingly used to anticipate the expansion of species
in both environmental and geographic space, however, extrap-
olating the presence of invasive organisms to other locations,
conditions, or times poses several challenges (Elith and Leathwick,
2009; Elith et al., 2010; Václavík and Meentemeyer, 2012; Elith,
2015). Among these modeling challenges is the need to consider the
extent to which invasive species have obtained equilibrium within
their introduced range (Guisan and Thuiller, 2005; Soberón and
Nakamura, 2009; Václavík and Meentemeyer, 2012), their poten-
tial to exhibit non-linear climatic tolerances (Huntley et al., 1995;
Austin et al., 2006; Austin, 2007), and the degree to which they
interact with other organisms (Jablonski, 2008; Wiens, 2011; Leach
et al., 2016).

Although climatic factors and evolutionary histories largely
drive biogeographic patterns at regional or continental scales
(Pearson et al., 2003), the realized distribution of an invasive species
over its introduced range may  not fully reflect that organism’s
true environmental tolerances, as time since introduction, dispersal
limitation, biotic interactions, and other influences may  constrain
ecological opportunity (Guisan and Thuiller, 2005; Soberón and
Nakamura, 2009; Václavík and Meentemeyer, 2012). It is critical
that SDM efforts contemplate that given sufficient opportunity
invasive species may  spread to areas that are suitable for colo-
nization but not yet accessible. Even when a species is at or near
equilibrium, an a priori assumption of a mean response to under-
lying environmental gradients could potentially bias results in
instances where the species actually experiences a skewed or non-
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linear response (Austin et al., 1990; Rydgren et al., 2003; Austin,
2007). Likewise, accounting for the role of biotic variables in shap-
ing species distributions may  be as important to understanding and
modeling an organism’s geographic distribution as is accounting
for climatic or edaphic considerations (Pellissier et al., 2010; Leach
et al., 2016). By incorporating information pertaining to the loca-
tions of allied or competing cohorts, models may  explain more of
the variance observed in the focal species distribution than can be
accounted for by abiotic factors alone.

Beyond the equilibrium assumption, non-linear responses to
environmental gradients, and biotic factors, understanding the
reciprocity of pattern and process over environmental and geo-
graphic space requires the explicit examination of spatial structure
and scale (Wiens, 1989). Because feedbacks between pattern and
process influence the functioning of both organisms and commu-
nities, the spatial arrangement of a species encodes information
about the ecology that shapes it (Hurtt and Pacala, 1995; Brown
et al., 2011; Velázquez et al., 2015). A major goal of SDM is to
reveal this ecology through analysis of geography. When a given
geographic distribution cannot be fully articulated as functions of
abiotic and biotic variables, then remaining uncertainty must be
quantified. Indeed, performing SDM without consideration of latent
spatial structure (spatial variability due to unconsidered covariates
and spatial correlation errors) may  result in coefficient estimates
or predictions with significant error (Hoeting, 2009; Dormann,
2007; Renner et al., 2015). Accounting for latent spatial structure
can be complex because numerous factors contribute to the spa-
tial arrangement of documented occurrences; including not only
species-specific ecological and evolutionary processes such as dis-
persal or competition, but also biased data collection (Kadmon et al.,
2003; Dormann, 2007). As one example, sampling or observer bias
influences the distribution of occurrence data and is often intro-
duced when species records are dis-proportionally sampled from
particular habitat types (Dennis and Thomas, 2000) or from areas
that are more readily accessible by humans (Kadmon et al., 2004;
Renner et al., 2015). It is therefore necessary that models account
for the “unknown” influences that arise from spatial dependency,
unmeasured variables, and biased data collection as well as the
“known” physical and ecological parameters that shape species
distributions.

Capable of accommodating both fixed and random effects,
Bayesian hierarchical models offer a flexible approach to SDM.
Their tiered configuration allows for incorporation of “known”
environmental and ecological variables as well as the “unknown”
effects associated with latent processes like spatial correlation.
Within the hierarchical model framework, latent structural pro-
cesses can be assimilated into models via random effect terms
that serve to quantify the uncertainty remaining after account-
ing for the effects of fixed covariates (Elith and Leathwick, 2009;
Elsner et al., 2016). Until recently, fitting of Bayesian hierarchical
models has been restricted to computationally demanding (read:
potentially slow) Markov chain Monte Carlo (MCMC) simulation;
however, integrated nested Laplace approximation (INLA) uses
accurate approximations to the marginal posterior densities for the
hyper parameters and latent variables providing a fast alternative
to MCMC  (Rue et al., 2009). Moreover, INLA when coupled with ran-
dom effect terms as Gaussian random fields are shown to produce
greater predictive accuracy than use of generalized additive mod-
els, logistic regression, and maximum entropy methods (Golding
and Purse, 2016).

Although INLA provides a newly accessible alternative to MCMC,
the specification of Gaussian random fields can still become quite
computationally expensive, particularly over large study domains
with dense matrices like those of interest to biogeographers and
frequently encountered during SDM. To help overcome this issue,
Lindgren et al. (2011) prescribe the use of approximate weak

solutions to stochastic partial differential equations (SPDE) as a
means of linking Gaussian random fields in the Matérn class to
discreetly indexed Gaussian Markov random fields. Because prop-
erties of the Gaussian Markov random field enable estimation over
sparse matrices, the SPDE approach permits the modeling of spa-
tial random effects over a triangulated mesh; thereby, negating the
need for dense grids and easing computational demand. The SPDE
approach builds on the efficiency afforded through INLA by facili-
tating construction of complex point process models in a flexible
and economical manner. From the perspective of spatial ecology,
point process models allow for the extraction of ecologically rel-
evant information pertaining to both pattern and process (Illian
et al., 2013; Simpson et al., 2015; Fithian et al., 2015; Renner et al.,
2015; Velázquez et al., 2016), which is critical for modeling species
such as Lygodium microphyllum.

Indigenous to the pantropics of Africa, Asia, and Oceania
(Pemberton and Ferriter, 1998), L. microphyllum (Old world climb-
ing fern) is classified as a Noxious Weed by the United States
Department of Agriculture (USDA et al., 2012) and a “Category
One” invasive by the Florida Exotic Pest Plant Council, meaning
that the plant impacts natural communities through the displace-
ment of native species, the changing of community structure,
and alteration of ecological function (Florida Exotic Pest Plant
Council, 2015). Since first collected as isolated specimens in the
mid-1960s (Beckner, 1968), L. microphyllum has spread throughout
Florida’s southern peninsula where it has enveloped canopy trees,
enshrouded herbaceous marshes, entangled wildlife, and altered
disturbance regimes by carrying fire into non-pyrogenic commu-
nities (Roberts, 1996; Wu et al., 2006; Volin et al., 2004). Because of
its injurious effects to native biota, L. microphyllum has been reason-
ably well-studied in southern Florida. In addition to landscape-level
models aimed at predicting growth rates and the probability of
occupancy over the greater Florida Everglades (Volin et al., 2004;
Wu et al., 2006; Fujisaki et al., 2010), greenhouse studies have
investigated the fern’s physiological response to changing hydrol-
ogy (Gandiaga et al., 2009) and freezing temperature (Hutchinson
and Langeland, 2014). The findings from these investigations high-
light several important biophysical and ecological characteristics;
L. microphyllum tolerates wetland habitats (Volin et al., 2010;
Gandiaga et al., 2009), exhibits a tendency to cluster or aggregate
within specific distance thresholds (Wu  et al., 2006), is often located
in proximity to other invasive species (Rodgers et al., 2014), and is
likely limited by temperature (Hutchinson and Langeland, 2014).

The goal of the current study is to forecast the distribution of
L. microphyllum under current and projected climate conditions
through adoption of a Bayesian geostatistical perspective. Though
our central ecological concern is the potential for the invasive
to spread throughout the southeastern United States, we choose
to model the species globally in order to include observations
from both its native and introduced range. Key goals of the study
include demonstrating the potential for random effects to esti-
mate non-linear climatic tolerances, clustering distance thresholds,
and spatial errors. In support of these goals, spatial models and
non-linear terms are compared to their non-spatial and linear coun-
terparts.

2. Materials and methods

2.1. Overview

The flowchart shown in Fig. 1 depicts the model development
process adopted for this study beginning with species occurrence
data and moving downward through geographic and environ-
mental considerations, iterative model evaluation, and prediction.
Incorporated data types and data sources are described in the
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