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a  b  s  t  r  a  c  t

Population  dynamics  models  incorporating  density  dependence  and  habitat  heterogeneity  are  useful
tools  to explain  and  project  the  spatiotemporal  variation  of wildlife  abundance.  Despite  their  wide
application  in  ecology  and  conservation  biology,  the  inference  and projection  of  these  models  may  be
problematic  when  residual  spatial  autocorrelation  (SAC)  is  found.  We aimed  to improve  the  inference  and
projection  of  population  dynamics  models  by  accounting  for  residual  SAC.  We  considered  three  Gompertz
models  that incorporated  density  dependence  and  the effect  of wetland  habitat  to explain  and  project
the  abundance  of  Mallard  (Anas  platyrhynchos). We  compared  a  conventional  model  that  did  not  account
for  residual  SAC  (ENV)  with  two  novel  models  accounting  for residual  SAC, one  incorporating  a  spatial
effect  (a spatially  autocorrelated  process  error)  that  did  not  vary  over  time  (STA)  and  the  other  incorpo-
rating  a spatial  effect  that  varied  over  time  (DYN).  We  evaluated  model  inference  using  data  from  1974
to  1998  and  projection  using  data  from  1999  to 2010.  We  then  forecasted  Mallard  abundance  from  2011
to  2100  under  different  levels  of wetland  habitat  loss.  The  DYN  model  eliminated  residual  SAC  and  had
better  model  fit than  the ENV  and  STA  models  (�D̄ = 2498.3  and 1988.8,  respectively).  The  projection
coverage  rate of  the  DYN  model  was  the  closest  to the  nominal  value  among  the three  models.  The  DYN
model forecasted  smaller  areas  with  decrease  in Mallard  abundance  under  future  wetland  habitat  loss
than  the  ENV  and  STA  models.  The  novel  and  conventional  population  dynamics  models  we  considered
in  this  study,  combined  with  the  practical  model  evaluation  approach,  can provide  reliable  inference  and
projection  of wildlife  abundance,  and  thus  have  wide  application  in  ecological  studies and  conservation
practices  that  aim  to  understand  and  project  the  spatiotemporal  variation  of wildlife  abundance  under
environmental  changes.  In particular,  when  conservation  decision-making  is  based  on model  projections,
the  DYN  may  be  used  to minimize  the  risk  of  reducing  conservation  effort  in areas  that  still  have  high
conservation  value,  due  to its  favorable  projection  performance.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Ecologists and conservation biologists have long sought to quan-
tify and understand the variation of wildlife abundance. Population
dynamics models (e.g. Gompertz models) can be used to explain the
spatiotemporal variation of abundance in relation to environmen-
tal variables and project abundance under novel environmental
conditions because they explicitly consider dynamic process while
accounting for environmental heterogeneity (Fahrig, 2007). How-
ever, the inference and projection of population dynamics models
may  be problematic when spatial autocorrelation (SAC) is found in
the residuals. SAC is commonly found in ecological data (Legendre,
1993; Koenig, 1999) because extrinsic environmental drivers are
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spatially autocorrelated (Lichstein et al., 2002) or due to intrin-
sic population processes (Wintle and Bardos 2006; Ficetola et al.,
2012). SAC can be fully accounted for only if all the extrinsic and
intrinsic drivers are included in the model structure (Cliff and Ord,
1981). Examples of models that fully explain all spatial variabil-
ity have rarely been achieved, however, due to our limited ability
to identify or measure all the key extrinsic and intrinsic drivers.
Therefore, in most cases, there is SAC in the model residuals, which
violates a basic assumption of most statistical approaches. It has
been shown that failure to account for residual SAC leads to biased
estimates of type I error and poor model fit (Legendre, 1993;
Dormann, 2007; Beale et al., 2010).

The effects of accounting for residual SAC have been well stud-
ied in species distribution models, a type of models that aim to
understand and project the geographical distributions of species
based on presence/absence or presence-only data (Guisan and
Zimmermann, 2000; Elith and Leathwick, 2009). Numerous studies
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have shown that accounting for residual SAC in species distribution
models improves parameter estimates and model fit (Keitt et al.,
2002; Lichstein et al., 2002; Segurado et al., 2006; Dormann 2007;
De Marco et al., 2008; Mauricio Bini et al., 2009; Beale et al., 2010;
Broms et al., 2014), but see (Hodges and Reich, 2010). Studies have
also shown that accounting for residual SAC in species distribution
models improves their ability to project current (Augustin et al.,
1996; Latimer et al., 2006; Finley et al., 2009) or future species
distributions (Swanson et al., 2013). By contrast, the effects of
accounting for SAC in population dynamics models remain poorly
understood. In particular, despite the fact that the environmental
factors and population processes causing SAC are likely to change
over time, little is known about the consequence for model infer-
ence and projection of accounting for the temporal variation of
spatial effect (i.e. a process error that is spatially autocorrelated)
in population dynamics models (Bled et al., 2011; Ross et al., 2012;
Bled et al., 2013).

In this study we compared the inference and projection of one
conventional and two novel Gompertz models with a case study
of Mallard (Anas platyrhynchos)  breeding populations in relation to
wetland habitat availability. North American waterfowl breeding
populations have been monitored for adaptive harvest manage-
ment since the 1950′s, but the current monitoring and management
framework is challenged to account for directional shifts in wetland
habitat dynamics associated with climate change (Nichols et al.,
2011; Sofaer et al., 2016; Zhao et al., 2016). In a previous study we
considered a conventional model that incorporated density depen-
dence and habitat heterogeneity, but did not account for residual
SAC, to explain and project the spatiotemporal variation of Mallard
abundance in relation to wetland habitat availability (Zhao et al.,
2016). However, in addition to wetland habitat, waterfowl abun-
dance can also be driven by other environmental factors such as the
distributions of predators (Ross et al., 2015) and population pro-
cesses such as migration (Johnson and Grier, 1988), which cannot
be explicitly incorporated in population dynamics models without
additional data. Thus the conventional model may  suffer from the
problem of residual SAC. In this study we developed two novel mod-
els to account for residual SAC, one incorporating a spatial effect
that did not vary over time, and the other incorporating a spatial
effect that varied over time. Our research focus was to improve
the explanation and projection of Mallard abundance in relation
to wetland habitat availability while accounting for residual SAC
representing other latent drivers.

We  considered three models to explain the spatiotemporal
variation of Mallard abundance, which corresponded to three
hypotheses. The first model only incorporated density dependence
and the effect of wetland habitat, but not a spatial effect (here-
after ENV model). This model represented the hypothesis that
wetland availability was the only environmental factor that drove
Mallard abundance. The second model incorporated density depen-
dence, the effect of wetland habitat, and a spatial effect that did
not vary over time (hereafter STA model). This model represented
the hypothesis that, in addition to wetland availability, there were
other latent factors that drove Mallard abundance, and these fac-
tors did not vary over time. The third model incorporated density
dependence, the effect of wetland habitat, and a spatial effect that
varied over time (hereafter DYN model). This model represented
the hypothesis that, in addition to wetland availability, there were
other latent factors that drove Mallard abundance, and these factors
varied over time.

First, we fit the models with a twenty-five year (1974–1998)
data set of Mallard density (i.e. abundance per unit area) and pond
density (a measure of wetland habitat availability) and compared
the inference of the models. Second, we used the posterior param-
eter samples obtained from model training and observed pond
density to predict Mallard density for the period of 1999–2010,

and compared the predicted Mallard density against the observed
Mallard density for the same period to evaluate the projection per-
formance of the models. Third, to illustrate the differences among
the models in forecasting Mallard population vulnerability to wet-
land habitat loss, we  fit the models with the full (1974–2010) data
set and used the posterior parameter samples to forecast Mallard
density for the period of 2011–2100 under different levels of loss
in pond density. Based on these results, we  sought to understand
the implications of modeling approaches ignoring or accounting for
residual SAC in conservation decision-making.

2. Materials and methods

2.1. Study area and data collection

North American waterfowl breeding populations have been
monitored annually by the U.S. Fish and Wildlife Service, Canadian
Wildlife Service, and their partners during the Waterfowl Breeding
Population and Habitat Survey (Smith, 1995; U.S. Fish and Wildlife
Service, 2012). The survey extends from the U.S. prairies north
through boreal-taiga habitat and into Alaska. Waterfowl species
are identified from an aircraft and individual birds within a 200 m
strip on each side of the aircraft are counted.

We  used the data from the Prairie Pothole Region and surround-
ing areas because the number of both waterfowl species and ponds
(a measure of wetland availability) are counted in this area (Fig. 1).
For this area, the survey is conducted in May  to be consistent with
Mallard’s breeding season. Because the aerial counts may suffer
from visibility bias, accurate ground counts of waterfowl and ponds
are obtained at a subsample of the aerial surveys. An observer-
and year-specific ratio of ground counts to aerial counts from the
area with both aerial and ground counts is calculated and multi-
plied to all the aerial counts observed by the same observer in the
same year. Such corrected counts are then used to calculate local
population abundance, which is considered to be free from system-
atic observation errors (Pollock and Kendall, 1987). More details
regarding survey design and the reliability of survey results can be
found in (Martin et al., 1979; Smith 1995). Our analyses are based
on the corrected count data of Mallard and ponds. Waterfowl and
pond abundance are summarized to grids that are 2◦ at latitude and
longitude, resulting in 174 grid cells (Fig. 1).

The study area covers three ecoregions, including the Badland
and Prairie, Prairie Pothole, and the southern portion of Boreal
Taiga Plain (Fig. 1). Ecoregions were delineated using hierarchi-
cal classifications based on a variety of ecological and biological
factors including location, climate, vegetation, hydrology, and ter-
rain (Commission for Environmental Cooperation, 1997). Because
factors that are used to define ecoregions are likely to affect the
relationship between wetland habitat and waterfowl population
dynamics, we use ecoregions in this study to represent different
habitat conditions at the landscape spatial scale (Zhao et al., 2016).

2.2. Model development

We used the Gompertz model (Ives et al., 2003) to explain Mal-
lard population dynamics. We  considered local Mallard density in a
year as a function of local Mallard density in the previous year and
local pond density in the same year. The ENV model incorporated
density dependence and the effect of pond, but not a spatial effect:
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where ducki,t represented the Mallard density in grid cell i and
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