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a  b  s  t  r  a  c  t

A  Bayesian  method  involving  Markov  Chain  Monte  Carlo  (MCMC)  technique  was  implemented  into
a  pesticide  fate  and  transport  model  to estimate  the  best  input  parameter  ranges  while  considering
uncertainties  included  in  both  the  observed  pesticide  concentrations  and in  the  model.

The  methodology  used  for integrating  the  MCMC  technique  into  a pollutant  fate  and  transport  models
was  detailed.  The  uncertainties  encompassed  in the  dissolution  rate  and  in the adsorption  coefficient  of
the  herbicide  mefenacet  were  greatly  reduced  by  the  MCMC  simulations.  In addition,  an  optimal  set  of
input  parameters  extracted  from  the  MCMC  simulations  accurately  reproduced  mefenacet  concentrations
in  paddy  water  and  paddy  soil  as  compared  to the  original  published  dataset.  Consequently,  by simulta-
neously  optimizing  multiple  parameters  of environmental  models  and  conducting  uncertainty  analysis,
MCMC technique  exhibits  powerful  capability  for improving  the  reliability  and  accuracy  of computer
models.

The  main  strengths  of the  MCMC  methodology  are: (1)  the  consideration  of  uncertainties  from  both
input  parameters  and  observations  and  (2)  the  prior  distributions  of  the input  parameters  which  can  be
reformulate  when  additional  knowledge  is  available.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The contamination of water bodies as a result of pesticide used
in agricultural fields, including rice paddies, was indicated in the
literature (Iwafune et al., 2010). While monitoring is crucial to
identify vulnerable areas to prioritize mitigation measures, it is
costly and tedious. Simulation models are useful tools that, once
validated, can help decision makers. Indeed, providing continuous
information through simulation model and forecast assessments
is a mandatory step for the registration of pesticide in Europe
and in the U.S. (ter Horst et al., 2013). However, a major diffi-
culty in predicting accurate pesticide concentrations arises from
the uncertainties incorporated in the input parameters of computer
models and in the observed or monitored datasets. A number of fac-
tors contribute to the uncertainty of forecasts, including parameter
uncertainty, spatial variability, conceptual uncertainty, and bound-
ary uncertainty (Görlitz et al., 2011; Hassan et al., 2009). In addition,
since some processes involved in pesticide fate and transport are
simplified or ignored by some computer models, the parameters
related to such processes cannot be gather through direct mea-
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surements in the field, but can only be derived using a calibration
procedure (Gallagher and Doherty, 2007; Vrugt et al., 2013). The
effects of uncertainty on the predictions of a computer model are
usually considered using analytical or numerical tools that spreads
the uncertainty’s attributes from the inputs to the final outputs of
the model. A representative quantification of parameter’s uncer-
tainty remains nonetheless a challenge during the calibration and
validation phases.

Model performance is typically quantitatively reported using
statistical indices, such as the goodness of fit (R2), which can
be maximized by manual or automatic adjustments of the input
parameters of the model (Hassan et al., 2009). Most optimization
methods are however limited since they do not: (1) estimate the
significance of the so-called optimal parameter set and (2) realis-
tically quantify the uncertainty encompassed in the model (Kanso
et al., 2006). Thus, it is arguable whether the so-called “optimized”
input parameters established during the calibration of a model are
appropriate. Indeed, due to non-uniqueness problems, two very dif-
ferent set of input parameters can often produce similar responses
of the model (Abbaspour, 2015).

Markov Chain Monte Carlo (MCMC) techniques provide a capti-
vating methodology to conduct the optimization of models while
considering uncertainty encompassed in both input parameters
and observations. However due their relative complexity, these
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techniques have not yet been demonstrated in a pesticide fate and
transport context. Thus, the aim of this research was  to implement
MCMC  techniques to a rice pesticide fate and transport model, the
PCPF-1 model. Specific objectives were defined as: (1) implement
a MCMC  algorithm (Metropolis-Hasting) into the PCPF-1 model,
(2) develop the methodology to analyze the outputs of the MCMC
simulation, and (3) validate the method by comparing the concen-
trations of the herbicide mefenacet predicted by the PCPF-1 model
using the original validated dataset and the concentrations pre-
dicted using the optimized dataset generated through the MCMC
output analysis.

2. Materials and method

2.1. PCPF-1 model

The PCPF-1 is a deterministic pesticide fate and transport model
used to forecast pesticide concentrations in paddy water (PW) and
in 1 cm deep paddy soil layer (PSL) (Watanabe and Takagi, 2000b;
Watanabe et al., 2006). The model considers the transport of pes-
ticide with paddy water (through irrigation, percolation, surface
runoff and drainage) and the fate of pesticide by computing var-
ious degradation, desorption, dilution and dissolution processes.
The best management practices for reducing pesticide discharge
from paddy fields were identified by analyzing the model forecasts
(Phong et al., 2011). The model is currently validated with six herbi-
cides in Japan (Boulange et al., 2015; Takagi et al., 2012; Watanabe
and Takagi, 2000a; Watanabe et al., 2006) and is pertinent for rice
paddies in Europe (Karpouzas et al., 2006) and in California, USA
(Luo et al., 2011). The inputs of the model consist of over 40 param-
eters which can be categorized into (1) climatic parameter, (2)
water balance parameters, (3) soil parameters and (4) pesticides
characteristics. A sensitivity and uncertainty analysis of the model
stated that the accuracy of the forecasted pesticide concentrations
in PW and PSL are extremely dependent on the accuracy of the
input parameters (Boulange et al., 2012; Kondo et al., 2012). While
improving the accuracy of some input parameters can be achieved
with better experimental designs and a re-parametrization of the
model, in most instances, the simulations need to be conducted
using available data due to cost and time considerations (Malve
et al., 2005). Four input parameters were included in the MCMC
framework: the pesticide dissolution rate (kdiss), the first-order
degradation rate of the pesticide in paddy soil (kbio), the desorption
rate of the pesticide (kdes), and the pesticide partitioning coefficient
(kd). All these parameters were reported to significantly impact the
accuracy of the predicted pesticide concentrations (Boulange et al.,
2012). A similar approach was adopted by Iizumi et al. (2009) who
removed from the optimization process the most robust (certain)
parameters even though some of them were empirical.

2.2. Bayesian inference

Bayesian inference prolong the use of probability theory by rep-
resenting the uncertainty of a system (Malve et al., 2005; Reichert
and Omlin, 1997). In a modeling application context, Bayesian infer-
ence is applied to estimate the values of � unknown parameters
of a model about which some prior information may  be avail-
able (Gallagher and Doherty, 2007; Harmon and Challenor, 1997;
Qian et al., 2003; Van Oijen et al., 2005). Using Bayesian inference,
parameter uncertainty can be realistically implemented as the
methodology distinguishes two sources of information for learn-
ing about unknown parameters: (1) pre-existing knowledge about
parameters of a model, and (2) data collected via experimentation
and observation (Bates and Campbell, 2001; Campbell et al., 1999;
Hassan et al., 2009).

The prior probability distributions of the � parameters are then
updated to a new, posterior distributions, using the data collected
via experimentations and observations (Hartig et al., 2011; Reichert
and Omlin, 1997). The updating process is based on Bayes’ theorem
(Bayes, 1763):

P(�|d) = P(�) · P(d|�)∫
�

P(�) · P(d|�) · d�

∝ P(�) · P(d|�) (1)

where P(�|d) is the posterior probability density of p model param-
eters � = (�1, �2 . . . �p) given additional data d = (d1, d2 . . . dn). P(�) is
the prior probability density of � and captures all available knowl-
edge about � (Campbell et al., 1999; Paulo et al., 2005). P(d|�) is the
conditional probability density for the measured data d given the
parameters �. It is often referred to as the likelihood function and
incorporates the statistical as well as the mechanistic relationships
among the predictors and variables (Liu et al., 2008).

Typically, it is difficult to analytically summarize the posterior
distributions which limits the practical implementation of Bayesian
inference. However, an alternative approach is to use a Markov
Chain Monte Carlo (MCMC) algorithm to obtain the numerical
summarization of the posterior distribution (Liu et al., 2008). The
process of collecting data, and thus acquiring knowledge about �,
is typically reflected in a reduction of uncertainty so that the pos-
terior density will be more concentrated, more informative, than
the prior density (Campbell et al., 1999).

2.3. Markov Chain Monte Carlo (MCMC) method

Bayesian inference often produce a posterior probability func-
tion that is difficult to compute using conventional numerical
methods (Bates and Campbell, 2001). MCMC  provides a general
methodology of computing the posterior without having to per-
form integration over it (Harmon and Challenor, 1997; Qian et al.,
2003). By generating a large enough sample from the posterior dis-
tribution, P(�|d), any desired features (expectation value, median or
maximum of the distribution) of the posterior distribution may  be
accurately summarized (Campbell et al., 1999; Chib and Greenberg,
1995; Hassan et al., 2009; Luke, 1994). Monte Carlo Markov Chain
sampling methods involve three major steps: (1) formulation of
the prior distributions of the selected parameters, (2) specification
of the likelihood function, and (3) MCMC  sampling to generate the
posterior probability distributions of the selected parameters.

The Metropolis-Hastings (M−H) method describes a category of
Monte Carlo methods which construct a Markov Chain in steps by
randomly sampling from the posterior distribution described by Eq.
(1) (Mathé and Novak, 2007; Wang and Chen, 2013). Although the
M−H algorithm is not the most efficient Markov Chain sampler, it
is extensively used in computer modeling applications due to the
simplicity of its implementation, and its generality (Gallagher and
Doherty, 2007; Kanso et al., 2006).

In practice, M−H algorithms begin by defining an initial value �0,
of the model parameters �. Then, by specifying a proposal density,
P(�*|�t −1), a candidate value �* is selected, and the ratio R can be
computed (Eq. (2)):

R = P(�∗|d)P(�t−1|�∗)

P(�t−1|d)P(�∗|�t−1)
(2)

where P(�∗|d) and P(�t−1|d) were previously defined as the poste-
rior probability densities of model parameters �∗ and �t−1 given
the data d, respectively (see Eq. (1)). The ratio R is compared to a
random sample � taken from a uniform distribution (0,1). When
R > �, the candidate value �* is accepted as the next value in the
sequence (�t = �∗). In contrast, when R < �, the candidate value �* is
rejected as the next value in the sequence (�t = �t −1). The sequence
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