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a  b  s  t  r  a  c  t

Utility  analysis  (Patten,  1991; Fath  and  Patten,  1999)  is  quite  useful  in  quantifying  direct  and  indirect
species  relations  in  a compartmental  ecosystems  model,  regardless  of  its size  or  complexity.  It  serves
as  a  basis  for  the  formulation  of  system-wide  synergism  (Fath  and  Patten,  1998) and  mutualism  (Fath,
2007) measures.  A significant  issue  that  limits  the  applicability  of utility  analysis  is that  its mathematical
formulation  requires  the convergence  of  a matrix  power  series,  which  may  fail  for  otherwise  perfectly
valid  ecosystem  models.  For  example,  utility  analysis  for the  well  known  Neuse  river  estuary  nitrogen
flow  models  (Baird  and  Ulanowicz,  1989), collected  over  4 years  (16  seasons  total),  do  not  converge
for  some  seasons,  but converge  for others.  Interestingly,  ecologists  find  the  analysis  results  meaningful
and  useful,  even  when  the  convergence  criteria  are  not  satisfied.  This  work  investigates  the  cause  for
this  divergence,  analyzes  the  properties  of the  matrix  power  series,  and  uses  an  alternative  summability
method  which  transforms  the  diverging  matrix  power  series  into  a converging  one. In particular,  we show
that  finitely  many  applications  of  the  Euler  transform  are  capable  of  forcing  convergence  on  an  otherwise
diverging  matrix  power  series  for utility  analysis.  While  the divergence  in  the  regular  sense  remains,  this
work brings  forward  a strong  mathematical  argument  that the utility  analysis,  synergism  and  mutualism
indices,  are  useful  for  all ecological  network  models,  regardless  of  their  convergence  characteristics.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Utility analysis (Patten, 1991; Fath and Patten, 1999) is an
invaluable tool to assess the harm or benefit of a species to another,
a species to its ecosystem, and the total sum of harm and benefit
experienced by the entire ecosystem. The latter system-wide mea-
sure is called the synergism index (Fath and Patten, 1998). Utility
analysis applies to flow network models of conservative quantities
(energy, matter), often depicted as directed graphs. These consist
of n compartments (nodes, vertices) interconnected by a set of
directed flows (directed links, edges). The compartments denote
standing stocks (x) as storages of the energy or matter, such as the
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total biomass of a certain species living in an area. These quantities
are transferred as directed flows (Fij) between compartment pairs.

Fij : Flow rate from compartment j to compartment i

zi : Environmental input rate into compartment i

yi : Environmental output rate from compartment i

xi : Storage amount at compartment i

(1)

Natural systems are composed of thousands, or even millions,
of individuals interacting while the compartments and flows are
idealized simplifications of these interactions attempting to model
the overall fluxes of the studied quantity between different modes
of residence within the system. The network “flows” considered
in ecological models are point transfers of mass or energy between
the node storages, representing interactions such as feeding among
species. The transfer set so constructed represents a system-of-
definition, open to energy and matter exchange at the system
boundaries, incoming as inputs (z), outgoing as outputs (y). The
inputs and storages generate the flows out from a compartment,
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whose sums at ith nodes are the outgoing throughflows (Tout).

Tout
i = yi +

n∑
j=1

Fji

T in
i = zi +

n∑
j=1

Fij

The total rate of matter or energy received by a compartment
defines the incoming throughflow (Tin

i
). The difference of the

incoming and outgoing throughflows defines the change in storage,
forming a differential equation

dxi

dt
= Tin

i (t) − Tout
i (t). (2)

If the storage values stay constant over time (dxi/dt = 0), meaning
that the system is at steady-state, then the incoming and outgo-
ing throughflows for each compartment are equal to each other
(Tin

i
= Tout

i
= Ti). One advantage of utility analysis is that it does

not require any information about flow kinetics or dynamics. For
an ecosystem model represented as a differential equation (2), it is
relatively easy to perform perturbation simulations to measure the
effects of a compartment on others. However, deriving an accurate
differential equation model of an ecosystem is no easy task, and
sometimes not even feasible. Utility analysis quantifies compart-
mental relationships using only flow rates among compartments
and the environment at steady state.

Utility analysis is built on the direct utility matrix D (Patten,
1991), defined as

Dij = Fij

Ti
− Fji

Ti
(3)

utilizing the steady state assumption that total input into and total
output from each compartment equal each other. Dij quantifies the
relative benefit (Dij > 0) or harm (Dij < 0) done by compartment j to
compartment i, based on only the direct interactions. For instance,
if j consumes i, Fji > 0 and clearly compartment j is harmful for i,
but the relative intensity of this harm depends on the existence of
other consumers of i. For example, if j is the only consumer of i, then
Ti = Fji + yi so Dij =− Fji/(Fji + yi), is near to −1, indicating that j does a
lot of the harm to i. But if compartment i has multiple consumers,
Ti will be larger and the relative harm to compartment i done by
compartment j will decrease. Hence, the ratio −Fji/Ti represents the
relative harm j does to i. Similarly, if i consumes j (Fij > 0), then j is
beneficial for i. The ratio Fij/Ti represents how beneficial j is for i,
among all resources of i. Eq. (3) defines D as a sum of this direct
benefit and harm received by i from j, in other words, the direct
utility of j for i.

The utility analysis matrix Uij quantifies how beneficial (Uij > 0)
or harmful (Uij < 0) compartment j is for i over all possible connec-
tions, direct and indirect. Second order effects of j on i are given
by the ij entry of the squared matrix, D2. Indeed, the ij coefficient
of D2 is given by

(
D2
)

ij
=
∑

kDikDkj with DikDkj being the product

of the relative good (or harm) done by compartment j to compart-
ment k with the relative good (or harm) done by compartment k to
compartment i. Summing over all compartments k gives the total
second order effects of compartment j on compartment i. Similarly,
all nth order effects are given by the elements of the nth power, Dn.
Therefore U is defined as a matrix power series of the D matrix, simi-
lar to the definitions of pathway, throughflow, and storage analyses
(Patten, 1978, 1985; Fath and Patten, 1999):

U := I + D︸︷︷︸
Direct

+ D2 + D3 + · · ·︸  ︷︷  ︸
Indirect

(4)

Table 1
Computations for utility analysis for the two  models shown in Fig. 1. The numerical
results in this table confirm the visual results presented in Fig. 1(c) and (d). The infor-
mation on the first column clearly shows that 1 + D + · · · + Dn converges to (I − D)−1

as n → ∞ for Model (a), whereas the second column shows that such convergence
is  not valid for Model (b), and we have 1 + D + D2 · · · /= (I − D)−1.

Model (a) Model (b)

D

[
0 −0.51 −0.24
1 0 −0.52
0.48 0.52 0

] [
0 −0.59 −0.09
1 0 −0.66

0.34 0.66 0

]
∑25

m=0
Dm

[
0.77 −0.39 −0.06
0.57 0.71 −0.44
0.51 0.26 0.85

] [
1.59 −1.05 −0.75
2.17 1.91 −1.11
0.10 1.47 1.44

]
∑100

m=0
Dm

[
0.67 −0.33 0.01
0.39 0.59 −0.40
0.52 0.15 0.80

] [
25.9 27.2 −6.9

−29.1 39.3 32.3
−37.5 −16.9 19.75

]
(I − D)−1

[
0.67 −0.34 0.01
0.39 0.59 −0.40
0.53 0.15 0.79

] [
0.68 −0.35 0.09
0.37 0.51 −0.41
0.48 0.22 0.76

]
Eigenvalues of D

[
0

−0.95i
+0.95i

] [
0

−1.045i
+1.045i

]

Since (Dm)ij represents the harm and/or benefit received by i
from j over all paths of length m,  U, defined as the sum of all powers
of D, represents the relationship among all compartments, taking
into account all direct and indirect connections.

2. Occasional failure of utility analysis computations

A significant problem with the mathematical formulation of the
utility matrix (4) limits its use. A necessary condition for the infinite
sum of the powers of D to converge to a finite value is that the
elements in the infinite sum must become smaller (converge to
zero), or at least partially cancel out. In certain cases, the elements
of the matrix Dm may  alternate between increasingly high positive
and negative values as the matrix power m increases, as shown in
Fig. 1(d). For those cases the sum defining U diverges. If the infinite
sum converges, it must converge to the matrix (I − D)−1. This matrix
can be constructed regardless of the convergence of the infinite
sum (Fath, 2004). It is perhaps tempting to simply define the utility
matrix U to be (I − D)−1 but then the original motivation of summing
all higher order effects is lost.

Indeed, most software performing utility analysis, such as
EcoNet (Kazanci, 2007; Schramski et al., 2011), enaR (Borrett and
Lau, 2014) and NEA.m (Fath and Borrett, 2006), naturally use
(I − D)−1 to compute U, as it is not feasible to compute an infi-
nite sum of matrix powers. So the software may  display a utility
matrix even in the event that the sum defining utility diverges.
The equivalence (I − D)−1 =

∑∞
m=0Dm relies on an apparently frag-

ile limit operation that may  fail for some models. Unfortunately
no clear ecological reason has been provided for this failure in the
literature so far. For example, the well known Neuse river estuary
nitrogen flow models (Baird and Ulanowicz, 1989) contain 16 eco-
logical network models based on data collected for four seasons
over four years. The utility analysis matrix converges for some sea-
sons, but not for others. Nevertheless, (I − D)−1 can be computed
for all seasons, and appears to provide reasonable and meaningful
information. Yet, without the necessary convergence, we have no
clear explanation as to what the matrix (I − D)−1 represents.

To investigate the issue further, we built two similar models
with identical network structures, but with slightly different flow
values, shown in Fig. 1(a) and (b). Table 1 shows essential matri-
ces computed for these two models. The results shown in Fig. 1(c),
(d) and Table 1 clearly demonstrates that the convergence criterion
is satisfied by Model (a), but not by Model (b), despite the strong
similarity between the two  models. Current methodology limits
the application of utility analysis to Model (a), and obtained results
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