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a  b  s  t  r  a  c  t

Understanding  the  growth  rates  of  fish  is  vital  for  effective  fisheries  management.  Historically  a  three-
parameter  von  Bertalanffy  growth  model  (VBGM)  has  most  often  been  used  to  describe  the  somatic
growth  of fish.  However,  increasingly,  populations  are  identified  with  patterns  of growth  that  are  not
adequately  described  by the  standard  VBGM.  We  describe  a more  flexible  growth  model  obtained  by
replacing  the  normally  constant  von Bertalanffy  growth  coefficient,  k, with  a piecewise  constant  function,
K, of age.  In  principle  this  allows  arbitrary  monotonic  growth  to be approximated  within  a  generalized  von
Bertalanffy  structure.  Posterior  distributions  of model  parameters  are  approximated  by  the  method  of
Hamiltonian  Monte  Carlo  using  the  Stan  software  package.  Spline  smoothing  of  the  K  function  is achieved
by  specifying  a  hierarchical  random  walk  prior.  We  compare  fits  achieved  using  this  new  approach  to
observations  of  length-at-age  of southern  bluefin  tuna  (Thunnus  maccoyii)  with  a  range  of  existing  growth
models.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Knowledge of growth rates of harvested fish species is important
for sound fisheries management. For example, harvest rates that
optimize sustainable yields depend upon somatic growth rates. For
some species growth curves are used to estimate the number or
proportion of fish harvested annually from each age class based
on length frequency samples from the catch. The age-structured
model used to estimate the global population of southern bluefin
tuna (SBT, Thunnus maccoyii) takes as a key data input estimates
of catch-at-age of an Australian purse seine fishery that harvests
juveniles. The purse seine catch-at-age is estimated by assigning
ages to length samples using cohort slicing based on a growth curve
(Kolody et al., 2016).

In fisheries applications, the three-parameter von Bertalanffy
growth model (VBGM) is used to model size-at-age more fre-
quently than any other growth model. The VBGM is an asymptotic
growth curve with no inflexion points assuming absolute growth
rate decreases continuously as animals approach their asymptotic
length. As growth information for various species accumulates, the
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identification of populations whose growth departs from the VBGM
is becoming increasingly common.

Many or even most fish species undergo profound changes in
their habitat or biology during their lifetime and often growth will
be affected. Ricker (1979) suggested that the growth of a fish across
its lifetime could be considered to consist of a series of stages or
stanzas with transition from one stanza to the next occurring as the
result of some crisis or discontinuity in development or a change
in habitat (p. 689). The effect upon growth of the onset of sexual
maturity has probably been investigated more often than that of
any other life history stage (see e.g. Lester et al., 2004; Quince et al.,
2008a,b; Roff, 1983). However, effects of other events have been
described. For example, individuals of some fish species are known
to change sex at certain times of life and, not surprisingly, this has
been found to affect growth in some cases (Davis, 1982; Matthias
et al., 2016; Higgins et al., 2015; Walker and McCormick, 2004). The
growth of diadromous fish such as salmon has been observed to
alter markedly when they move between freshwater and saltwa-
ter environments (Ricker, 1979). An apparent acceleration in the
growth rate of Nile perch, modelled by Soriano et al. (1992), has
been attributed to a shift in its diet from zooplankton to fish.

Working within a general framework described previously by
Wang (1998), we  replace the constant von Bertalanffy growth coef-
ficient, k, with a function of age and we  refer to this function as
‘growth trajectory’, or more simply as the K function. We  propose a
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piecewise constant K function that facilitates flexible modelling of
asymptotic growth whilst making minimal assumptions about the
parametric form of the growth process.

Ultimately we seek to specify a model that satisfies the desider-
ata of Sandland and McGilchrist (1979) to a greater extent than
existing models. That is, the model should be highly flexible and
able to be fitted to a wide variety of shapes whilst, at the same
time, retaining some of the biological interpretability associated
with the standard VBGM (Sandland and McGilchrist, 1979, p. 257).
We fit generalised von Bertalanffy growth models with piecewise
constant growth trajectory functions to 2161 direct observations of
length-age taken from southern bluefin tuna harvested by interna-
tional fishing fleets using Bayesian methods. Spline smoothing of
the log growth trajectory function is achieved by the specification
of a hierarchical random walk prior. The results are compared to a
range of existing parametric growth models that we  fit to the same
data.

2. Background

2.1. The VBGM

We  consider the problem of estimating the average length of
a population of animals as a function of age. As a starting point
we first describe the three-parameter VBGM which, as mentioned,
is the model most commonly used to describe fish growth. Let-
ting l denote the mean length of individuals in the population as a
function of age, a, the VBGM is characterised by the relationship:

dl

da
= k(L∞ − l(a)), k > 0, (1)

where L∞ is an asymptotic mean length and k is a positive con-
stant. The popularity of the VBGM in fisheries applications stems,
at least in part, from the view amongst many fisheries scientists
that the model has a biological foundation. However, the validity
of the biological argument for the VBGM has been questioned (e.g.
Ricker, 1979; Sandland, 1983) and the need for empirically based
model comparison emphasised.

2.2. A generalisation of the VBGM

Wang (1998) describes a generalisation of Eq. (1) such that K can
vary with age as well as with potentially age-dependent covariates.
This generalised VBGM is characterised by the relationship:

dl

da
= K(a, xa|�)(L∞ − l(a)), K(a, xa|�) > 0 ∀a, (2)

where xa is a matrix of covariate values and � is a vector of parame-
ters. This approach has been applied to wild populations to examine
the effect on growth of latitude (Lloyd-Jones et al., 2012) and of
inserting tags for mark-recapture purposes (Wang, 1998; Wang and
Jackson, 2000). The effects of covariates are not considered in the
present study, but we allow growth trajectory, K, to vary with age.

Wang (1998) gives the solution of Eq. (2) in its general form.
Initially we restrict our attention to the special case where l(0) = 0,
which is reasonable for most bony fish species. The solution of this
special case can be expressed as:

l(a|L∞, �) = L∞

(
1 − exp

(
−
∫ a

0

K(u|�)du

))
. (3)

Strictly speaking, l must be continuously differentiable for Eq. (3)
to be a solution of (2) and this places certain restrictions on the
function K. However, Laslett et al. (2002) note that any cumulative

distribution function scaled by asymptotic length can be used as a
growth model. Therefore, Eq. (3) forms a growth model provided:∫ ∞

0

K(u|�)du = ∞. (4)

We mention Eq. (2) to highlight the relationship between the K
function we refer to as growth trajectory and the von Bertalanffy
parameter, k, in Eq. (1).

The new models we  describe below are compared with exist-
ing growth models some of which are not subject to the l(0) = 0
constraint. We  briefly explain later how the approach we describe
can also be easily extended to accommodate the growth of species
where the assumption of zero length at birth is not appropriate.

3. Methods and materials

3.1. Piecewise constant growth trajectory function

The piecewise constant function is a popular choice to model
the baseline hazard function in survival analysis problems (see
e.g. Fahrmeir and Kneib, 2011; Ibrahim et al., 2001). As implied
by Schnute and Richards (1990), survival and growth models are
actually quite similar. In this sense the hazard function, central to
survival analysis, is analogous to what we refer to as the K function
within the generalised von Bertalanffy growth framework, Eq. (3).

We define knot locations, 0 = �0 < �1 < · · · < �J−1 < �J, where �J is
greater than or equal to the maximum age observed so that the J + 1
knots, �j, partition observed age. Letting I(· ) denote an indicator
function which takes the value one when condition · is true and
zero otherwise, the piecewise constant growth trajectory function
is defined as:

K(a|� = {�1, . . .,  �J}) =
J∑

j=1

�jI(�j−1 ≤ a < �j), �j > 0. (5)

With sufficiently short interval lengths, the piecewise constant
function can approximate an arbitrary function of age. The very
simple degree-zero spline basis terms allow the integral in Eq. (3)
to be evaluated for any set of �j as the sum of the areas of J rectangles
and so readily updated within a Monte Carlo algorithm. We  con-
strain the �j to be strictly positive to ensure the fitted length-at-age
curve is monotonic. We  refer to growth models incorporating this
approach as ‘VB-spline’ models and call this first example VBspl1
to distinguish it from a slightly modified version that we describe
below.

3.2. A slightly altered growth trajectory function

Exploratory modelling of the SBT data suggested that estimated
growth trajectory in the first year might be substantially higher
than in subsequent years. In an attempt to avoid a large change
in the K function at age 1 we  consider a second VB-spline model
having a very slightly modified growth trajectory function from
that defined in Eq. (5). This second spline model, which we refer to
as VBspl2, has K function:

K(a|�) = I(0 ≤ a < �1)
{

�1 + a(�2 − �1)
�1

}
+

J∑
j=2

�jI(�j−1 ≤ a < �j).

(6)

The VBspl2 growth model is obtained by substituting Eq. (6) into the
general growth model (3). This adjustment amounts to replacing
the first constant interval of Eq. (5) with a linear interpolation from
�1 to �2 between ages �0 = 0 and �1. The integral of the K function is
then just the sum of the areas of one trapezium and J − 1 rectangles.
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