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a  b  s  t  r  a  c  t

Stochastic  cellular  automata  for rock-paper-scissors  games  are  related  to  Lotka-Volterra  model.  Simu-
lations are  usually  performed  by two methods  local  and  global  interactions.  It  is well  known  that  the
population  dynamics  with  local interaction  is stable,  where  all  species  coexist.  In contrast,  global  inter-
action leads  to extinction.  So far,  theories  such  as mean-field  theory  and  pair  approximation  have  been
presented,  but  they  never  explained  the  stable  dynamics  in  local  simulation.  In  the present  article,  we
apply  effective  medium  approximation  (EMA)  which  has  been  developed  in  Physics.  The  effective  medium
is  determined  in  a self-consistent  way.  The  EMA  theory  well  predicts  the  stability  of  population  dynamics.
Moreover,  it fairly  explains  the aggregation  of  each  species  observed  in the  stationary  state.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The coexistence of multiple species has been discussed by
many authors and the plausible mechanisms have been proposed
for the coexistence (Chesson and Warner, 1981; Gauze, 1934;
Muko and Iwasa, 2000; Sugden, 2001; Tilman, 1994; Tubay et al.,
2013). Recently, cooperative interactions among species, rather
than competition, predation, and parasitism, are getting known for
promoting biodiversity (Bruno et al., 2003; Tainaka and Hashimoto,
2016). Cooperative, facilitative, or positive interactions are the
broad concepts including mutualism and commensalism. Basically,
if two different species compete for the identical niches, one will
eventually die out because of the competitive exclusion principle
(Gauze, 1934). However, cooperative interactions allow two dif-
ferent species to coexist by differentiating the niches (Gatti, 2011).
That generated biodiversity becomes the source of further biodiver-
sity (Gatti et al., 2017; Janz et al., 2006; Sugden, 2001). In contrast,
it has been said since many years ago that spatial structure is the
key to maintain biodiversity.

Among theoretical ecologists, lattice models (stochastic cellular
automata) of rock-paper-scissors (RPS) game have been inves-
tigated to reveal the role of spatial structures in various fields

∗ Corresponding author.
E-mail address: tainaka.keiichi@shizuoka.ac.jp (K.-i. Tainaka).

(Reichenbach et al., 2007; Szabó and Fáth, 2007; Szolnoki et al.,
2014; Szolnoki and Perc, 2016; Tainaka, 1993). Especially, the con-
nection to real ecosystems is well known. The cyclic relationship
among three species RPS is important in the sense that they are
quite useful to maintain biodiversity from plants to animals. One
of the best examples is the mating strategies of side-blotched
lizards (Sinervo and Lively, 1996). Other examples are marine ses-
sile organisms (Burrows, 1998; Buss, 1980), competition between
mutant strains of yeast (Paquin and Adams, 1983), prey-predator
system (Tainaka and Fukazawa, 1992), grass-tree system (Durrett
and Levin, 1994), three strains of E. coli (Kerr et al., 2002) and fishes
in fresh water (Sugiura et al., 2016). These species in cyclic relation
can coexist in nature.

For spatial RPS models, simulations are usually carried out by
two methods: local and global interactions (Frean and Abraham,
2001; Sato et al., 1994; Tainaka, 1989, 1988). In the former, inter-
action occurs between neighboring cells, whereas in the latter
it occurs between any pair of cells. It is well known that the
population dynamics differs depending on simulation methods.
Theoretical works firstly showed that the dynamics is unstable for
global interaction (Itoh, 1973), while it is stable for local interaction
(Tainaka, 1988). Then, this fact was proved by some elegant exper-
iments (Kerr et al., 2006, 2002; Weber et al., 2014). There exists
unsolved problem for a long time: no theory explains the stable
dynamics in local interaction. So far, two approximation theories
are widely recognized: mean-field theory and pair approximation.
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Fig. 1. Simulation results of population dynamics for global interaction. Time depen-
dences of densities are depicted for L = 100 × 100. Initial condition is set to be
(x,  y, z) = (0.5, 0.1, 0.4). Blue, red and green mean species X, Y and Z, respectively.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web  version of this article.)

However, these theories never predicted the stable dynamics in
local simulation (see Appendix A).

In the present paper, we apply effective medium approxima-
tion (EMA) which has been developed in Physics (Hori, 1977; Hori
and Yonezawa, 1974; Nagatani, 1981a,b). In real nature, EMA  cor-
responds to the state that the distributions of species reach the
equilibrium after the longtime period. We  explore two types of EMA
theories: one-site and two-site EMAs. It is found that both theories
well predict the stability of population dynamics: all species can
coexist for local interaction.

2. Preliminary

We  deal with a RPS system on a square lattice composed of L
cells. Each cell is occupied by one of three species: X (rock), Y (scis-
sors) and Z (paper). The interaction between a pair of cells occurs
as

X + Y → X + X (1a)

Y + Z → Y + Y (1b)

Z + X → Z + Z (1c)

Simulation method for local interactions is as follows:

1) We  choose a pair of adjacent cells randomly.
2) If the chosen cells occupy different species, then reactions (1)

take place. For example, if X and Y are chosen, then Y becomes
X.

3) Repeat the steps 1) and 2), until the system reaches a stationary
state.

Next, the simulation procedure for global interaction is
described. Almost all procedures are the same as local interaction,
but the step 1) is changed as follows: “we choose two  cells randomly
and independently”.

Simulation results are entirely different depending on simula-
tion method. In the case of global interaction, RPS system is unstable
[see Fig. 1]. Two species eventually go extinct. Itoh first proved such
an extinction (ruin) (Itoh, 1973). His proof is very simple. Let x(t),
y(t) and z(t) be the population densities of X, Y and Z at time t,
respectively. Here, the total density is unity: x(t) + y(t) + z(t) = 1. He
showed that the expectation value of P(t) always decreased, where
P(t) is the triple product defined by x(t)y(t)z(t). The decreasing rate

Fig. 2. Simulation results of for local interaction. (a) Same as Fig. 1 but for local
interaction. (b) Typical spatial pattern in stationary states. Three colors mean the
same species as in Fig. 1.

of P(t) was proportional to L−1. Here L is the total cell number.
His proof has the following meanings. When Lis finite, the system
evolve to the extinction (ruin). In contrast, if L → ∞,  the product
x(t)y(t)z(t) becomes the constant in motion. In this case, mean-
field theory (Lotka-Volterra equation) holds, so that the dynamics
is neutrally stable (see Appendix A).

When the interaction occurs locally, the dynamics becomes sta-
ble. Tainaka first showed the stable dynamics as illustrated in Fig. 2
(Tainaka, 1989, 1988). When L is finite, an undamped oscillation
(stochastic limit cycle) is observed (Itoh and Tainaka, 1994). The
amplitude of oscillation was found to proportional to L−1. Namely,
if L → ∞,  the dynamics becomes asymptotically stable; all species
eventually have the same density (x = y = z = 1/3).

3. Theory

3.1. Basic equations

Time dependences for densities can be represented by

dx/dt = aPXY − cPZX (2a)

dy/dt = bPYZ − aPXY (2b)
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