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a  b  s  t  r  a  c  t

This  work  considers  the  estimation  of  transition  probabilities  associated  with  populations  moving  among
multiple  spatial  locations  based  on numbers  of  individuals  at each  location  at  two  points  in  time.  The
problem  is  generally  underdetermined  as  there  exists  an  extremely  large  number  of  ways  in which  indi-
viduals  can  move  from  one  set  of locations  to another.  A  unique  solution  therefore  requires  a constraint.
The  theory  of optimal  transport  provides  such  a constraint  in the  form  of  a  cost  function,  to  be  minimized
in  expectation  over  the  space  of possible  transition  matrices.  We  demonstrate  the  optimal  transport
approach  on  marked  bird  data  and  compare  to the  probabilities  obtained  via  maximum  likelihood  esti-
mation  based  on  marked  individuals.  It is shown  that by  choosing  the  squared  Euclidean  distance  as
the  cost,  the  estimated  transition  probabilities  compare  favorably  to those  obtained  via maximum  like-
lihood  with  marked  individuals.  Other  implications  of  this  cost  are  discussed,  including  the  ability  to
accurately  interpolate  the population’s  spatial  distribution  at unobserved  points  in time  and  the  more
general  relationship  between  the  cost  and  minimum  transport  energy.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Movement of individuals from one subpopulation to another
is a key determinant of population dynamics and a cornerstone of
metapopulation theory (Hanski, 1998, 1999; Turchin, 1998). In ani-
mal  ecology, inferences about rates and underlying probabilities of
movement are typically based on studies of marked individuals. In
some cases the marks are radio transmitters, and animal location
can be determined very frequently and at will (White and Garrott,
1990; Patterson et al., 2007). For other individual marks, animal
location cannot be determined remotely, and must be assessed
via recapturing or resighting marked individuals. These sampling
methods admit nondetection of marked animals that are present
in sampled areas, and require multistate capture-recapture mod-
els (e.g., Arnason, 1972, 1973; Brownie et al., 1993; Schwarz et al.,
1993; Lebreton et al., 2009) for inference about movement. Both
types of study require substantial effort and expense.

An alternative approach to inference about movement can be
based on aggregate data in which the identity of individual ani-
mals is not available (e.g., Willekens, 1977; Willekens et al., 1981;
Cooch and Link, 1999). For example, consider a certain number of
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individual animals that are present in our system at both times t
and t + 1. We  do not know the identities of each individual at each
time period, but we  instead have counts of how many of them are
at each of N locations at both times. Depending on the number of
individuals involved, there can be a large number of possible indi-
vidual movements that produce any set of location-specific counts
at t + 1, given the counts at t (Gail and Mantel, 1977). Hence, infer-
ences about actual rates of movement are not possible without
constraints on the problem. Cooch and Link (1999) used an entropy
maximization approach to inference but concluded that the requi-
site assumptions were sufficiently restrictive to limit utility of the
approach for ecological systems.

Here we present a different approach to this problem of infer-
ence about rates of movement using only aggregate data. The
approach derives from the theory of optimal transport (Villani,
2008), in which the requisite constraint takes the form of a cost
function to be minimized. Although the development of optimal
transport theory has taken place in disciplines other than ecology,
its underlying conceptual framework is closely related to ideas in
metapopulation theory and landscape ecology. For example, ecol-
ogists are frequently concerned about fragmented landscapes that
reduce animal movement, using the term “connectivity” to refer to
“the degree to which the landscape facilitates or impedes move-
ment of organisms among source patches” (e.g., Taylor et al., 1993;
Tischendorf and Fahrig, 2000). Connectivity is typically expressed
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as some function of the cost required to move between patches,
and the cost is usually either squared Euclidean distance or some
function of it (Moilanen and Hanski, 2001; Adriaensen et al., 2003).
In addition, the very theory of optimal transport is based on the
underlying principle of work minimization in physical processes,
whereas the process of natural selection tends to maximize fitness
and associated behaviors of biological organisms (e.g., Fisher, 1930;
Clark and Mangel, 2000).

In what follows we provide a brief description of optimal trans-
port theory as it pertains to the problem at hand: namely the
estimation of transition probabilities governing movement based
only on aggregate summary statistics at two different times. Sec-
tion 2 describes the basic optimal transport problem, while Section
3 discusses the cost of movement and how that cost is related to
system dynamics. Section 4 then provides an illustrative numerical
example, and Section 5 applies the theory to a real-world exam-
ple, comparing the method to a more conventional approach based
on maximum likelihood estimation with marked individuals. We
discuss the implications of the analysis in Section 6.

2. Problem formulation

The basic optimal transport problem is to minimize the expected
cost EXY[c(x, y)] of moving a unit “mass” from one spatial location,
x, to another, y. The distribution of mass at the starting and ending
locations is characterized by the probability functions PX(x) and
PY(y); these are considered known at the problem outset (In our
notation we use capital letters, e.g., X, to denote random variables
and lower case, e.g., x, to denote the values they are used to model).
Moreover, the random variables X, Y will be defined on the problem
domain �,  taken here as the subset of R

2 describing the particular
patches of earth on which our populations are distributed.

What is unknown is the joint probability distribution PXY(x, y),
defined on � × �,  describing the fraction of mass at each location in
x that must move to each location in y. This distribution is referred
to as the “optimal transport plan” in the sense that it minimizes
expected cost via

K (PX (x) , PY (y)) = minPXY (x,y)

∫
X×Y

c (x,  y) dPXY (x, y) . (1)

subject to the constraint that PXY(x, y) admits PX(x) and PY(y) as
marginals.

Eq. (1) is known in optimal transport theory as the Kantorovich
distance. Remarkably, (1) has a unique minimizer despite the infi-
nite number of possible transport plans that are consistent with
both PX(x) and PY(y) as marginals. The only practical requirement is
that the cost function return a positive, real valued number (Villani,
2008). While the roots of the minimization problem (1) extend back
a hundred or more years (see again Villani (2008) or Bogachev and
Kolesnikov (2012) for historical treatment), a tremendous volume
of recent work (last 10-15 years) has explored the theoretical and
computational aspects of this minimization problem.

In an ecological context, one can think of PX(x) and PY(y) as
population distributions at times t and t + T respectively while
each location in � is specified by two coordinates, x = (x1, x2),
y = (y1, y2), defining a position on the earths’ surface relative
to a user-defined origin. We  will correspondingly denote as N
and M the number of such locations associated with the start-
ing and ending distributions respectively. The ith such location
will be denoted xi ≡ (x1,i, x2,i). The distributions we consider are
discrete, e.g., PX (xi) =

∫
X

BX (i)
BT

ıX (x − xi)dx, i = 1. . .N and PY (yj) =∫
Y

BY (j)
BT

ıY (y − yj)dy, j = 1. . .M, where ı(·) is the Dirac delta func-
tion. Here we will use BT to denote the total number of individuals
present at both times, t and t + T, while BX(i), i = 1 . . . N, BY(j),

j = 1 . . . M represent population counts at spatial sites xi, yj respec-
tively.

The discrete, joint distribution for which we are solving, PXY(xi,
yj), tells us how many individuals at location xi at time t move to
location yj at time t + T. The discrete version of (1) is therefore given
by Kolouri et al. (2016)

K(PX (xi), PY (yj)) = minPXY (xi,yj)

N∑
i=1

M∑
j=1

c(xi, yj)PXY (xi, yj)

s.t.

M∑
j=1

PXY (xi, yj) = PX (xi),
N∑

i=1

PXY (xi, yj) = PY (yj)

PXY (xi, yj) ≥ 0, i = 1. . .N, j = 1. . .M

(2)

and can be used to solve for the N × M matrix of transport proba-
bilities, PXY(xi, yj), i = 1 . . . N, j = 1 . . . M.

This information is typically estimated by tracking a repre-
sentative subset of individuals in the population from t to t + T.
The minimizer (2) affords the possibility of obtaining this same
information, but without tracking individuals; rather the desired
probabilities are obtained by supplying the appropriate cost func-
tion with marginals as constraints and solving (2). Note, that (2) is a
linear program (albeit a potentially high-dimensional one) and can
be solved using standard numerical methods.

While the number and locations of the monitoring sites can be
different at times t and t + T, in what follows we will assume a fixed
number of monitoring sites so that M = N and yi = xi, i = 1 . . . N. This is
likely to be the more typical situation in practice (Spendelow et al.,
1995; Martin et al., 2006; Sanderlin et al., 2012). See Fig. 3, Section
5 for a graphical picture of the relevant quantities and associated
notation for our example study system.

3. Choice of cost

Defining an appropriate cost of movement has been discussed
previously in the ecological literature, and may  be a direct function
of Euclidean distance or instead modified by features such as ele-
vational gradient, habitat, etc. (Adriaensen et al., 2003; Bonte et al.,
2012; Etherington, 2016). Frequently, the cost is taken as simply
the distance over which members of the population must travel,
i.e., longer distances equate with higher cost. In fact, we will show
that by choosing c(x, y) = ‖y − x‖2

2, the solution to (1) produces a
transport plan that minimizes the kinetic energy associated with
movement. In doing so we  will review the well-defined connection
between “cost” and “energy” of optimal transport. In our view, this
relationship underscores the potential power of optimal transport
in studying metapopulation dynamics.

3.1. Cost as an energy minimizer

In mechanics, the principle of energy minimization guides the
derivation of equations governing the dynamics of many types of
systems (e.g., structural dynamics, fluid mechanics, thermodynam-
ics, etc.). In short, the principle states that of all possible paths
describing the evolution of a dynamical system, nature will take
the one associated with the least energy (least work).

Denote the time-dependent state of a system by the vector
� t ∈ R

d and its time derivative �̇ t . The Lagrangian of a dynam-
ical system, denoted L(� t , �̇ t , t), quantifies the work associated
with non-dissipative (conservative) forces and can be written as
the difference between the system kinetic and potential energy
(Nichols and Murphy, 2016). Solutions � t that minimize the total
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