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a  b  s  t r  a  c  t

The  accuracy  of spatially-explicit  individual-based  models  (IBMs)  often  depends  on  the  realistic  sim-
ulation  of the  movement  of  organisms,  which  is especially  challenging  when  movement  cues  (e.g.,
environmental  conditions;  prey and  predator  abundances)  vary  in time  and  space.  A  number  of
approaches  or sub-models  have  been  developed  for simulating  movement  in  IBMs.  We  evaluated  four
movement  sub-models  (restricted-area  search,  kinesis,  event-based,  and  run  and  tumble)  in a  spatially-
explicit  cohort  IBM  in which  the  prey  and  predators  were  both  dynamic  (varying  across  cells  and  over
time)  and responsive  to  the  dynamics  of  the cohort  individuals.  Movement,  growth,  and  mortality  were
simulated  every  25  min  for 30 12-h  days  (single  generation)  on a  2.7  ×  2.7 km2 grid  with  625  m2 cells,
and  egg  production  was  calculated  based  on  weight  and  survival  of individuals  at the  end  of  30  days.
We  based  the cohort  model  on  small  pelagic  coastal  fish,  and the prey  was  based  on  zooplankton  and
the  predators  based  on  a  typical  piscivorous  fish.  Movement  sub-models  were  calibrated  with  a genetic
algorithm  in  dynamic  and  static  versions  of  the  prey  and  predator-defined  environments.  Prey  and  preda-
tor fields  were  fixed  in  the  static  environment;  in  the  dynamic  environment,  prey  density  was  reduced
based  on  consumption  and  predators  actively  sought  out cohort  individuals.  Static-trained  sub-models
were  then  tested  in  the dynamic  environments  and  vice  versa.  The  four movement  sub-models  were
successfully  trained  and  performed  reasonably  well  in terms  of  egg  production  (a  measure  of  individual
fitness)  when trained  and  tested  in  the  same  type of  environment.  However,  the  type  of  environment
affected  calibration  success,  and  static-trained  models  did  not  perform  well  when  tested  in  dynamic
environments  because  cohort  individuals  moved  in  response  to both  prey  and  predator  cues  rather  than
primarily  avoiding  fixed-in-space  high  mortality  cells.  Use  of  movement  sub-models  in IBMs  should  care-
fully  consider  how  the  conditions  assumed  for calibration  relates  to the  dynamic  conditions  the  model
will  be  used  to address.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Individual-based models (IBMs) are becoming increasingly pop-
ular, and many are spatially-explicit with dynamic environmental
conditions (DeAngelis and Mooij, 2005; Grimm et al., 2005; Filatova
et al., 2013). The accuracy of simulations often depends on realis-
tic movement of organisms, which is especially challenging when
movement cues (often related to environmental conditions) vary
in time and space. The resolution of spatially-explicit models has
been increasing as finer resolution environmental and movement
data become available (Myers et al., 2006; Mills et al., 2007; Schick
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et al., 2008; Neumann et al., 2015), more detailed physical-chemical
models can be solved that generate environmental inputs (Allen
et al., 2007; Soufflet et al., 2016), and management issues have
required spatially-detailed predictions (Lindenmayer and Fischer,
2013; Guisan et al., 2013; Peterson et al., 2013; Hofmann and
Gaines, 2008). One of the major challenges in spatially-explicit
individual-based modeling is how to represent the movement
behaviors and decisions of individuals.

Models that include representation of dynamic environments,
particularly in aquatic systems where the fluid nature of water
strongly affects the biological community, are also becoming more
common as methods have advanced for coupling physical and bio-
logical models. For example, Goodwin et al. (2006) simulated the
passage of migrating fish around hydroelectric dams using hydro-
dynamic movement cues generated from a physical model. Fiksen
et al. (2007) simulated the dispersal of larval cod based on their
vertical position and the current patterns predicted by a general cir-
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culation model, and Huse and Ellingsen (2008) predicted changes
in capelin migration patterns in response to climate change using
a model that coupled a biophysical model of the Barents Sea with
an IBM of the capelin population. Another way spatially-explicit
IBMs can incorporate dynamic environments is in multi-species
modeling, where the behavior of one model individual affects the
conditions perceived by its prey, predators, and competitors. Sable
(2007) developed an IBM of a six fish species tidal marsh commu-
nity to assess the effects of hypoxia, and Campbell et al. (2011)
evaluated the effects of the spatial arrangement of artificial reefs on
a three species reef fish community in the northern Gulf of Mexico.
Throughout this paper, we focus on behavioral movement of fish,
and so cite fish-related papers and use terms like swimming speed
and assess fitness of individuals with egg production based on a
typical fish fecundity by weight relationship. However, our meth-
ods are easily generalized such that the methods and results apply
to variety of taxa and to other movement algorithms.

Modeling movement is challenging because we rarely under-
stand the mechanisms that fish and other organisms use to perceive
and respond to their environment (Nathan et al., 2008; Demšar
et al., 2015). Movement is even more challenging in models
with dynamic environments because the spatial distribution of
movement cues varies from one time step to the next. Feedback
mechanisms further complicate movement simulation in dynamic
environments. Feedback mechanisms (e.g., predators chase their
prey; crowding depletes prey) cause the distribution of movement
cues to change in time and space in response to movement deci-
sions of the individuals. In this situation, the environment can not
only vary in time and space, but also in response to the local activ-
ities of individuals and thus to the state of the population.

A number of approaches have been developed for simulating
movement in IBMs. These approaches make different assumptions
about how organisms perceive and respond to their environment
and use different mathematics to predict movement responses.
Restricted-area search assumes individuals are able to evaluate all
cells within a defined area and identify the cell with the highest
quality habitat (Railsback et al., 1999; Giske et al., 2003; Haas et al.,
2004). Artificial neural networks (ANNs) use information about
the current location, past experience, and other cues to determine
directional velocities (Huse and Giske, 1998; Huse and Ellingsen
2008). Run and tumble divides the movement into running, where
individuals move in a constant direction, and tumbling, where indi-
viduals randomly select a new swimming direction (Humphries
et al., 2010; Loboschefsky et al., unpublished manuscript).

Correlated random walks are a common approach for simulat-
ing movement where a random turning angle and swimming speed
are selected at each time step from defined probability distribu-
tions. Random walks can direct movement without considering
environmental cues or they can adjust behavior (angle and swim-
ming speed) based on environmental information (Codling et al.,
2008). Kinesis is a random walk approach that continuously adjusts
turning angle and swimming speed distributions based on cur-
rent environmental cues (Humston et al., 2000, 2004). Event-based
movement allows for switching among multiple discrete random
walk behaviors (or other user defined behaviors) based on current
and recently experienced environmental cues (Anderson, 2002;
Goodwin et al., 2006).

Dynamic environments in spatially-explicit IBMs can be either
externally forced or dependent on the state of population of inter-
est. Many coupled models use the output of hydrodynamic and
water quality models as inputs to an IBM, which is then run sepa-
rately (Goodwin et al., 2006; Fiksen et al., 2007; Huse and Ellingsen,
2008). In this case, individuals in a particular cell at a particular
time will always experience the same conditions defined by the
output from the physical model (e.g., temperature). In other cases,
models have been developed in which the environmental condi-

tions also respond to the dynamics of the population of interest For
example, allowing for depletion of prey in cells due to crowding
and for predators to aggregate on groups of individuals resulting in
dynamic prey and predator fields that respond to the movements of
the individuals. In multi-species IBMs, the prey and predator fields
can themselves be modeled with their own movement approaches
(Campbell et al., 2011; Rose et al., 2015). In dynamic environments
with feedbacks, an individual’s behavior affects its exposure to
prey, competitors, and predators, which in turn, affects the prey,
competitor, and predator dynamics.

In this paper, we  evaluate four movement sub-models
(restricted-area search, kinesis, event-based, and run and tumble)
in a spatially-explicit cohort IBM in which the prey and predators
are both dynamic (vary across cells and over time) and responsive to
the dynamics of the cohort individuals. We  very roughly based the
cohort model on a small pelagic fish, and thus the prey was  based
on zooplankton and the predators on a typical piscivorous fish. We
used egg production as a measure of fitness, and the terms swim-
ming speed and swimming angle to describe movement. However,
the cohort model was  relatively general and the analysis and results
also apply to other (non-swimming) taxa with fitness measures
other than egg production that move in 2-dimensional space.

The analysis approach was to train the four sub-models using a
genetic algorithm (GA) in dynamic and static versions of the prey
and predator-defined environments, and then to test the trained
sub-models in the other type of environment. We  examined egg
production, weight, abundance, the mean cell quality experienced,
and trajectory measures of individuals to evaluate sub-model per-
formance. Sub-models were trained in the dynamic environment
and tested in the static environment, and trained in the static envi-
ronment and tested in the dynamic environment. We  conclude
with a discussion of the movement patterns generated by each
sub-model, and recommendations for future application of these
sub-models in applied population and community IBMs.

2. Methods

2.1. Model overview

The individual-based cohort model followed the growth, mor-
tality, and movement of individuals on a 2.7 km × 2.7 km spatial
grid of 625 m2 square cells. We  simulated growth, mortality, and
movement for 3000 super-individuals every 25 min  for a 30 day
generation with 12 h days. Cells are referred to by the x-dimension
(column number, c) and y-dimension (row number, r); continuous
locations of individuals are in meters in the x and y dimensions
from the origin located at the lower left corner. Individuals moved
in continuous space and were mapped to cells, which were each
associated with a prey biomass and number of predators in the
cell. Individual growth was  a function of the prey biomass in its
cell, and mortality was  determined by the number of predators in
the cell as well as individual length. Movement was  made modu-
lar so that the four different movement sub-models could be used
interchangeably. The cohort model and the GA used to calibrate the
movement sub-models were coded in Fortran 90.

The cohort model used a super-individual approach (Scheffer
et al., 1995) to simulate both the individuals in the cohort and the
predators. A super-individual is a model individual worth some
number of actual individuals with identical characteristics. Use of
super-individuals allows for simulation of a fixed number of model
individuals (fixed array sizes) and for simulation of high mortal-
ity. In a true individual-based approach, when an individual dies, it
is removed from the simulation. With super-individuals, all model
individuals remain in the simulation, but their worth is decreased
to represent mortality effects.
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