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a  b  s  t  r  a  c  t

One  of the  fundamental  decisions  foragers  face  is  how  long  an  individual  should  remain  in a given foraging
location.  Typical  approaches  to  modeling  this  decision  are  based  on the  marginal  value  theorem.  How-
ever,  direct  application  of  this  theory  would  require  omniscience  regarding  food  availability.  Even  with
complete  knowledge  of the  environment,  foraging  with  intraspecific  competition  requires  resolution  of
simultaneous  circular  dependencies.  In response  to these  issues  in  application,  a number  of  approximat-
ing  algorithms  have  been  proposed,  but it remains  to be seen  whether  these  algorithms  are  effective  given
a  large number  of  foragers  with  realistic  characteristics.  We  implemented  several  algorithms  approxi-
mating  marginal  value  foraging  in a large-scale  avian  foraging  model  and  compared  the  results.  We  found
that  a novel  reinforcement-learning  algorithm  that  includes  cost  of  travel is the  most  effective  algorithm
that  most  closely  approximates  marginal  value  foraging  theory  and  recreates  depletion  patterns  observed
in empirical  studies.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimal patch selection describes how foragers should be dis-
tributed across heterogeneous landscapes with respect to food
items and to each other. Under simplifying assumptions, optimality
theory predicts that foragers consuming continually-replenishing
resources might select patches according to the ideal free dis-
tribution (Fretwell and Lucas, 1969), in which animals distribute
themselves in the patches proportionate to the gain rate of
resources. However, for many animals, patch selection is dynamic:
when resources are depleted in one area, animals must find
new patches containing those resources. In 1976, Charnov pro-
posed marginal value theorem (MVT), an analytical solution for
determining when to leave a foraging patch that predicts that
a forager should depart when the intake rate for that patch
falls below the long-term average intake rate across all available
patches. Charnov’s theoretical result sparked a flurry of empirical
and modeling studies that suggested other patch-departure rules
including fixed-time, fixed-intake, minimizing, maximizing, and
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inter-reward intervals (e.g., Cowie, 1977; Hodges, 1981; Iwasa et al.,
1981; McNair, 1982; Green, 1984; McNamara and Houston, 1985).

There remains some uncertainty as to how well any animal
fits the predictions of MVT  and whether any animal could actu-
ally gather the information required to implement MVT  (Stephens
and Krebs, 1987; Stephens et al., 2007). Nonetheless, animals likely
use some foraging strategy to be able to thrive in their environ-
ment, whether through evolution, learning, development, or some
combination of these processes. We  may  expect such strategies to
approximate MVT.

Since MVT  has broad application, including agent-based mod-
els (ABMs) that explore how individual behaviors scale up to create
patterns at larger scales (Grimm et al., 2005; DeAngelis and Mooij,
2005; McLane et al., 2011) and non-biological systems such as
robot foraging (Ulam and Balch, 2004), finding the best algorith-
mic  approximation for MVT  is of critical importance for applied
foraging contexts. In this paper, we explore several avenues by
which behavioral and biological researchers can optimally program
foraging agents that approximate MVT, using overwintering water-
fowl as a test species. In particular, we  are interested in which
algorithms provide the longest survival times in an environment
with depleting resources. We  examine two approaches suggested
in the robotics literature, subsequently modified to account for
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Table  1
Abbreviations used in this paper.

Abbreviation Meaning

ABM Agent-based model
DT50M Days to 50% mortality
DTD Days to deficit
GUD Giving-up density
IFD Ideal free distribution
LTFA Long-term-forward average
MVT  Marginal value theorem
OMVT Online MVT  algorithm
RLMVT Reinforcement-learning MVT  algorithm
XOMVT Extended OMVT algorithm
XRLMVT Extended RLMVT algorithm

travel time, and examine how these different approximations to
MVT  affect energy intake and survival in our modeled system.

1.1. Marginal value theorem

We  consider three different implementations of marginal value
theorem in this paper: Charnov’s (1976) original MVT, or classi-
cal MVT; an algorithm approximating MVT  based on reinforcement
learning (Wawerla and Vaughan, 2009), or reinforcement-learning
MVT; and an algorithm approximating MVT  using continuously-
updated estimates (Wawerla and Vaughan, 2010), or online MVT
(abbreviations are summarized in Table 1). In the latter two  cases,
we consider both the original techniques suggested by Wawerla
and Vaughan as well as modified versions of these methods that
take into account differential costs of travel between foraging areas,
or extended reinforcement-learning MVT  and extended online MVT.

1.2. Classical MVT

In 1976, Charnov proposed a mathematical model for the
amount of time a forager should remain in a patch of a given qual-
ity. If we consider that patches can be assigned a patch type based
on patch quality, identified by p, and a forager has a net gain in a
patch of type p of gp(Tp) if it spends Tp amount of time in that patch
type, then the marginal rate of intake as length of time in the patch
type increases is

∂gp

(
Tp

)

∂Tp
. (1)

(See Table 5 for notation). Similarly, if we are given the travel
time between patches, t’, and the cost of travel Etravel , we can cal-
culate the net intake rate for each patch type,

gp

(
Tp

)
− t′Etravel

t′ + Tp
. (2)

If we know the proportion of each patch type in the environ-
ment, �p, we can then calculate the average net intake rate for the
whole environment,
∑

p�pgp

(
Tp

)
− t′Etravel

t′ +
∑

p�pTp
(3)

Charnov showed that Tp is optimized when the marginal rate
was equal to the average net intake rate for the environment. That
is, more time spent in the patch would be wasted effort and less
time would fail to exploit useful resources.

Calculating this rate requires omniscient knowledge of patch
quality across the environment. The gain function g must be suffi-
ciently characterized to calculate its rate of change as time-in-patch
increases, and for heterogeneous patches, g must be characterized
for all patches in the environment. Even in the case of a single

forager it is uncertain that the gain function can be adequately
characterized (see, for example, Stephens and Krebs, 1987) because
average intake rate depends on the time in patches, and time in
patches depends on average intake rate. With multiple foragers
and exploitation competition, both marginal and net intake rates
change as a function of the number of foragers in the patch; an ideal
forager would not only resolve its own  circular dependency in MVT,
but would also have to solve it for every other forager. Ignoring the
fact that animals cannot gather this information in the real world
(Bartoń and Hovestadt, 2013), the problem of circularity in applying
MVT  has suggested that computation even with perfect informa-
tion is intractable (Wawerla and Vaughan, 2010). These difficulties
in applying MVT  are not surprising since MVT  was derived as a the-
oretical optimum that behavior might approach in the limit, not as
a strategy for decision-making and not under real-world conditions
such as resource competition and depletion (Stephens and Krebs,
1987; Wajnberg et al., 2006).

1.3. Reinforcement-learning MVT

Because of these difficulties in developing optimal foraging algo-
rithms that satisfy MVT, algorithms that approximate MVT  have
been proposed to determine time in patches, often relying on
very simple rules (Gibb, 1958; Krebs, 1973; Krebs et al., 1974;
McNamara, 1982). One of the more promising approaches was pro-
posed by Wawerla and Vaughan (2009) who estimated the optimal
patch departure time by simulating reinforcement learning, which
we refer to as reinforcement learning MVT, or RLMVT.

RLMVT is based on an approach to simulating reinforcement
learning by implementing the n-armed bandit using softmax to
overcome local optima (Sutton and Barto, 1998; see Supplemen-
tal material C.1). This algorithm can be used to optimize foraging
behavior. Consider that the essential problem in implementing
MVT is determining the energy gain rate at which the agent should
switch patches (the switching threshold). An agent can choose to
switch at too high a rate, which will result in spending too little
time in any given patch; it can choose to switch at too low a rate,
which will result in spending too much time in any patch; or it can
choose the optimal rate, which should converge with the predic-
tions of MVT. If we  consider each of the switching thresholds as one
of the slot machine’s n arms and we equate the net gain across all
patches using that switching threshold as its reward, we can use
the n-armed bandit algorithm to find the optimal rate at which to
switch patches under MVT. That is, the expected reward for a given
switching threshold (corresponding to an arm) is the average net
gain rate experienced in patches for which that threshold was used.
The softmax algorithm helps greedy optimization systems like the
n-armed bandit from settling into local basins of attraction by mak-
ing choices that currently appear less than optimal more likely to
be selected; it also prevents the expected reward values for less-
likely thresholds from becoming outdated by allowing them to be
selected occasionally (and thus updated) throughout the simula-
tion. Softmax uses a parameter called temperature (�), in which
higher temperatures make less-optimal-appearing choices increas-
ingly likely, going to equal probabilities for all choices regardless of
expected reward at infinitely-high temperatures (see Supplemen-
tal material C.1 for softmax details).

There are two complications: (1) switching threshold is a con-
tinuous variable, while the arms on the slot machine represent
discrete values; and (2) the optimal switching threshold may
change as food resources are depleted. Wawerla and Vaughan
(2009) conceptualized this mapping between MVT  and the n-armed
bandit and addressed the first complication by generalizing Sut-
ton and Barto’s algorithm for a continuous action space (detailed
in Supplemental material C.1). The second complication arises as a
result of agents foraging within a finite environment: classical MVT
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