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a  b  s  t  r  a  c  t

Ontogenetic  growth  reflects  the  changes  of biomass,  height  (or  body  length)  of  a  biological  organism  as
a function  of time.  Many  growth  equations  have  been  built  but  few  can accurately  predict  the  ending
time  of  growth.  Here  we  are attempting  to  provide  two growth  equations  for predicting  the  time when
growth  terminates.  Meanwhile,  these  models  are also  expected  to  apply  to  different  growth  patterns  of
biological  organisms.  Two  time-dependent  growth  equations  with  four parameters  each  were  obtained  by
replacing  temperature  with  time  in two  non-linear  mathematical  models  that describe  the temperature-
dependent  developmental  and  growth  rates  of poikilotherms.  Both  models  can  generate  a skewed  or
symmetrical  bell-shaped  curve.  We  obtained  the growth  equations  by integrating  these  two  temperature-
dependent  developmental  rate  models  with  temperature  replaced  by  time.  The  dry  weight  data  of  six
species  of agricultural  crops,  the  height  data  of  four bamboo  species,  the  tree-ring  width  data  of  two
coniferous  species,  and  the fresh  weight  data  of  16  animals  were  used  to  fit these  growth  equations.
Both  growth  equations  agree  well  with  the  actual  growth  data  of  animals  and plants.  Additionally,  one
equation  exhibits  wide  applicability  and  is  better  than  the  other  in  describing  the  tree-ring  width.  The
time  of  reaching  the  maximal  biomass  or height  can  be predicted  by these  two  models.  The growth
equations  are  valuable  for predicting  the  time  when  the  maximal  biomass  and  height  (or  body  length)
are  reached.  Parameters  of theses  equations  can  directly  reflect  the growth  rate:  the  conceptual  starting
time of  growth,  the ending  time  of growth,  the maximal  growth,  and  the  time  associated  with the  maximal
growth  rate  that  is actually  the  inflection  point  of  the  growth  equation.  We  show  that  these  two  equations
apply  to  many  diverse  species.  It is worthwhile  to  explore  and  compare  the growth  patterns  of  biological
organisms.  In addition,  the  prediction  of  tree-ring  width  of  conifers  will  be helpful  to accurately  predict
the  carbon  storage  in  forest  ecosystems.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Ontogenetic growth of animals and plants is always a hot subject
in ecological research, and many growth models have been built
and compared (von Bertalanffy, 1957; Richards, 1959; Zweifel and
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Lasker, 1976; Sharpe et al., 1985; Birch, 1999; Heinen, 1999; West
et al., 2001, 2004; Yin et al., 2003; Makarieva et al., 2004; Thornley
et al., 2007; Paine et al., 2012; Shi et al., 2014, 2016a). Many growth
equations such as the logistic, Gompertz, von Bertalanffy equations
provide an asymptotic value for predicting the maximal biomass,
height (or body length), or superficial area. Yin et al. (2003) pro-
posed a sigmoid growth equation based on the beta function, which
predicts the time when the biomass of plants reaches its maxi-
mum.  We  refer to it as the beta sigmoid equation (BSE) below. Shi
et al. (2016a) further demonstrated that the BSE can be applied to
the growth of many plants. The beta function was first proposed
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by Yin et al. (1995) to describe the effect of temperature on the
developmental rates of crops. There are other mathematical models
that have similar curve shapes that describe the temperature-
dependent developmental rates of insects (Régnière et al., 2012;
Shi et al., 2016b and references therein). Shi et al. (2016b), using ten
datasets on insects, found that the model proposed by Ratkowsky
et al. (1983) exhibits greater fitting flexibility than the beta func-
tion. However, Ratkowsky and Reddy (2017), using the same ten
datasets, demonstrated that the model proposed by Lobry et al.
(1991) is even better than the one proposed by Ratkowsky et al.
(1983). Even when the sample size is relatively small, the estima-
tors of the parameters of the former model are relatively unbiased
with respect to the latter, and are close to being normally dis-
tributed and are close to the minimum variance bound (Ratkowsky,
1990). In fact, at an earlier date Rosso et al. (1993) compared their
model with that proposed by Ratkowsky et al. (1983), and showed
that the former has advantages over the latter in terms of the bio-
logical interpretability of their parameters. We  refer to the model
proposed by Rosso et al. (1993) as the LRF function below.

Interestingly, the LRF function and the beta function have the
same four parameters: a) a conceptual lower temperature thresh-
old where development starts, b) a conceptual upper temperature
threshold where development terminates, c) the maximal devel-
opmental rate, and d) an ‘optimal’ temperature associated with
the maximal developmental rate. In the ontogenetic growth equa-
tion, the conceptual lower and upper temperature thresholds are
replaced by the starting time and ending time of growth; the maxi-
mal  developmental rate represents the maximal (absolute) growth
rate; and the temperature associated with the maximal devel-
opmental rate is replaced by the time when growth reaches its
maximum. The BSE was obtained by integrating the beta func-
tion; by the same token we could obtain a new growth equation
by integrating the LRF function. Although the number and mean-

ings of model parameters in both growth equations of interest are
the same, the model structures are different.

Since the LRF function is better than the beta function in terms
of its estimation properties in non-linear regression (Ratkowsky
and Reddy, 2017), we expect the integral of the former to also be
better than the BSE in fitting biomass, height (or body size) of ani-
mals and plants. Hence, we have attempted to compare these two
growth equations by using different datasets. In addition, there are
two more reasons that we have compared them: (i) both equa-
tions can predict the time when biomass or body size reaches its
maximum, and (ii) the growth rate curve can be symmetrical or
not. The traditional three-parameter logistic model only produces

a symmetrical growth rate curve, which to a large extent reduces
the fitting flexibility.

2. Material and methods

2.1. Data

We  used the dry weight data of six species of agricultural crops:
kidney bean (Phaseolus vulgaris), adzuki bean (Vigna angularis),
mungbean (Vigna radiata), cotton (Gossypium spp.), sweet sorghum
(Sorghum bicolor), and corn (Zea mays). For each species, the mean
dry weight (aboveground + underground) was calculated by using
20 random samples at a specific time (see Shi et al. (2013) for
details).

In the spring of 2016 (from April to June), we  investigated the
height growth of four species of bamboos (Phyllostachys iridescens,
Phyllostachys mannii, Sinobambusa tootsik,  and Pleioblastus macula-
tus) that are cultivated in the Nanjing Forestry University campus.
For each bamboo species, we chose the height data of an individual
at different times for parameter fitting.

We also used tree-ring width data record from two species of
conifers: Qilian juniper (Sabina przewalskii) and white spruce (Picea
glauca). The tree-ring width record of Qilian juniper is from 1059
A.D. to 1975 A.D., which contains 917 data in total (Zhuo, 1981). The
tree-ring width data of white spruce is from 1880 A.D. to 2011 A.D.,
for a total of 132 data points (Huang et al., 2013).

To further check whether the models can be applied to ani-
mals, we used the published weight data of 12 species of animals
in West et al. (2001). In addition, we also used the mean weight
data of two  species of nestling birds: Florida scrub jay (Aphelo-
coma c. coerulescens; Woolfenden, 1978) and California scrub jay
(Aphelocoma c. superciliosa; Ritter, 1984).

2.2. Beta function and the derived growth equation

Yin et al. (1995) proposed a beta function for describing the
temperature-dependent developmental rates (or growth rates) of
crops:
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where r represents the developmental rate (or growth rate) at
temperature T; Tmin represents the conceptual lower temperature
threshold below which the developmental rate diminishes to zero;
Tmax is the conceptual upper temperature threshold beyond which
the developmental rate also equals 0; Topt is the optimal temper-
ature at which the developmental rate is a maximum (=ropt); and
ı is a scaling constant, which controls the concavity and convexity
of the curve. We  term Tmin and Tmax ‘conceptual’ lower and upper
temperature thresholds as these two  parameters are usually not
their actual thresholds. Development might terminate even though
temperature is slightly higher than Tmin or slightly lower than Tmax.
Yin et al. (2003) built a growth equation based on the above beta
function by replacing all occurrences of a temperature (T, Tmin, Topt,
Tmax) by a time (t, tmin, topt, tmax):
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Here, w represents the biomass or body size of a biological
organism at time t; r represents the growth rate at time t; tmin
and tmax represent the conceptual starting and ending times of
growth; ropt represents the maximal growth rate at time topt; ı
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