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a  b  s  t  r  a  c  t

To  successfully  manage  marine  fisheries  using  an  ecosystem-based  approach,  long-term  predictions  of
fish stock  development  considering  changing  environmental  conditions  are  necessary.  Such  predictions
can  be  provided  by end-to-end  ecosystem  models,  which  couple  existing  physical  and  biogeochemi-
cal  ocean  models  with  newly  developed  spatially-explicit  fish  stock models.  Typically,  individual-based
models  (IBMs)  and  models  based  on  advection-diffusion-reaction  (ADR)  equations  are  employed  for  the
fish  stock  models.  In this  paper,  we  present  a novel  fish stock  model  called  SPRAT  for  end-to-end  ecosys-
tem  modeling  based  on population  balance  equations  (PBEs)  that  combines  the  advantages  of  IBMs  and
ADR models  while  avoiding  their main  drawbacks.  SPRAT  accomplishes  this by  describing  the  modeled
ecosystem  processes  from  the perspective  of  individuals  while  still being  based  on  partial  differential
equations.

We apply  the SPRAT  model  to explore  a  well-documented  regime  shift  observed  on  the  eastern  Scotian
Shelf  in  the  1990s  from  a cod-dominated  to  a herring-dominated  ecosystem.  Model  simulations  are  able
to reconcile  the observed  multitrophic  dynamics  with  documented  changes  in  both  fishing  pressure  and
water temperature,  followed  by a predator–prey  reversal  that  may  have  impeded  recovery  of  depleted
cod  stocks.

We conclude  that  our model  can  be used  to generate  new  hypotheses  and  test  ideas  about  spatially
interacting  fish  populations,  and  their  joint  responses  to both  environmental  and  fisheries  forcing.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Living marine resources and their exploitation by fisheries play
an important role in sustaining global nutrition but many of the
world’s fish stocks are in poor condition due to overharvesting
(Worm et al., 2009; Costello et al., 2016). This reduces the pro-
ductivity of the stocks significantly and necessitates improved
management in order to achieve a sustainable use of global fisheries
resources.

Fishing, however, is not the only impact on the condition and
productivity of fish stocks but long- and short-term variability of
environmental parameters due to climate change or other sources
of variability (such as the North Atlantic Oscillation (NAO)) imposes
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additional pressures (Brander, 2007). The effects of changes in
the environment on fish can be direct (e.g., by altering individual
growth rates) or indirect (by affecting the net primary productiv-
ity and, thus, the carrying capacity of the ecosystem). Sometimes,
these factors may  interact with anthropogenic influences in com-
plex ways. For example, the expansion of oxygen minimum zones in
the tropical northeast Atlantic Ocean due to climate change com-
presses the suitable habitat of pelagic predator fish to a narrow
surface layer and, thus, increases their vulnerability to surface fish-
ing gear (Stramma et al., 2012). The resulting high catch rates in
such areas can lead to overly optimistic estimates of species abun-
dance and, therefore, to exaggerated fishing quotas that put the
affected stocks in danger of overexploitation.

Another case illustrating the complexities of how fishing and
climate can interact in driven rapid ecosystem change is the recent
overfishing of Atlantic cod (Gadus morhua) stocks in the Gulf
of Maine that occurred despite stringent management practises.
Here, retrospective analysis showed that this change can in large
part be attributed to rapid ocean warming that has led to an
unrecognized effects on recruitment and mortality, and indirectly
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rendered fisheries exploitation rates unsustainable (Pershing et al.,
2015).

From such examples, it becomes apparent that fisheries man-
agement must address the effects of fishing and climate variability
and change in a joined framework, accounting for the effects of
different sources of mortality, including changes in natural mortal-
ity, predation, and fishing (Rose et al., 2010). Thus a more holistic
ecosystem-based approach has been called for, which may  focus on
marine ecosystems as a whole and takes into account the interde-
pendence of their components (Cury et al., 2008).

Ecological models that can supply this kind of information are
sometimes called end-to-end models because they incorporate all
ecosystem components from the dynamics of the abiotic envi-
ronment to primary producers to top predators (Travers et al.,
2007). In such models, the different elements of the ecosystem
are linked together mainly through trophic interactions—i.e., by
feeding (Moloney et al., 2011). Ideally, all these links between
components are modeled bidirectionally (e.g., an increase in fish
biomass due to feeding on zooplankton is also reflected in a
decrease of zooplankton biomass). Such a two-way coupling of
model elements allows to explicitly resolve at the same time both
bottom-up and top-down mechanisms of ecological control. It is the
combination of modeling these bidirectional links in the trophic
structure and considering the dynamics of the environment that
enables end-to-end models to provide long-term predictions on the
development of fisheries ecosystems under environmental change.
In the context of ecosystem-based fisheries management, these
predictive capabilities can be used to evaluate different manage-
ment scenarios with regard to their long-term effectiveness (Stock
et al., 2011).

In practice, end-to-end models are typically constructed by
using an existing physical and biogeochemical ocean model (for
the abiotic environment as well as for nutrient and plankton
dynamics) and creating a spatially-explicit fish model that can
be coupled with the ocean model (Shin et al., 2010). In this con-
text, fisheries are usually included in the model by assuming a
mortality rate due to fishing (constant or changing with time),
which applies homogeneously to the fish population beyond a
certain lower size limit. Implementing a complete end-to-end
model from scratch is discouraged by the amount of effort that is
needed for developing sophisticated physical and biogeochemical
models.

The most widely used fish models for end-to-end modeling
are either individual-based models (IBMs), such as OSMOSE (Shin
and Cury, 2001), or models based on advection–diffusion–reaction
(ADR) equations, such as SEA-PODYM (Bertignac et al., 1998;
Lehodey et al., 2013). IBMs offer the advantage that they are
relatively easy to parametrize as their parameters are typically
observable in individual fish. Additionally, these models can eas-
ily feature an emergent, dynamic food web structure. However,
since—at the ocean scale—it is not feasible to simulate all individual
fish of the study region, so-called super individual approximations of
IBMs are employed (Scheffer et al., 1995). With this approach, indi-
viduals that share similar characteristics are replaced by a so-called
super individual—i.e., an individual that has parameters similar to
those of the individuals it represents plus an additional parameter
that describes the number of individuals it stands for. This approxi-
mation technique is problematic because there is no mathematical
framework for IBMs that would allow to formally study how many
super-individuals are necessary to simulate the inter-individual
interactions with sufficient accuracy.

Since ADR models are based on partial differential equations
(PDEs), they integrate well with existing biogeochemical ocean
models and feature a rigid mathematical framework with estab-
lished approximation techniques for which formal error bounds
can be described. Furthermore, ADR equations are derived from

the principle of mass conservation and are, thus, well-suited for
studying mass fluxes in marine ecosystems. However, ADR models
can be difficult to parametrize because most of their parameters
are usually not observable in individual fish and the full life cycle of
the fish species is not directly represented in their main equation
(only discrete age classes can be modeled).

In order to combine the advantages of IBMs and ADR models
and to prevent their main drawbacks, we  propose a fish model
for end-to-end modeling that is based on so-called population bal-
ance equations (PBEs) (Ramkrishna, 2000). Our PBE model—which
is called SPRAT—represents fish as density distributions on a com-
bined continuous space-body size domain. Since PBEs are based on
differential equations, they share the advantages of ADR models
with regard to the integration with existing biogeochemical ocean
models and to the existence of established approximation tech-
niques. At the same time, PBE models share the distinct advantage
of IBMs that most of their parameters can directly be observed in
individual fish and that food web structure emerges dynamically
from the model.

Potential drawbacks introduced by our PBE-based model SPRAT
in comparison to IBMs and ADR models include:

1 Since we represent fish as density distributions we cannot track
fish and their interactions down to the level of single individuals
(as it would be possible with an IBM not using the super individual
approximation).

2 In comparison to ADR models, the SPRAT model is associated with
increased computational costs because PBE models represent the
size of individuals as an additional dimension of the domain of a
PDE.

For a more detailed comparison of the PBE approach with IBMs and
ADR models refer to Johanson (2016, Chap. 10).

The PBE approach to fish stock modeling is similar to so-called
size spectra models, which also describe fish via distribution func-
tions on a continuous body size domain (see, e.g., Carozza et al.,
2016; Andersen and Beyer, 2006; Maury and Poggiale, 2013).
In the context of size spectra models, however, space is typi-
cally not resolved in the deduction of the models and is only
introduced later on by assigning an instance of the respective
model to each box or grid point of a discretized spatial grid
(hence these models could be characterized as replicated one-
dimensional or univariate PBE models). An exception to this is
the APECOSM model by Maury (2010), which is designed to study
apex predators (namely tuna). APECOSM is a spatially-continuous,
mass-balanced size spectrum model that, like SPRAT, offers a uni-
fied continuous description of fish in both space and body size
via a single distribution function. Hence, SPRAT could also be
described as a spatially-continuous size spectrum model. Despite
the strong similarities between these approaches, we prefer to
call SPRAT a PBE model to highlight that SPRAT is derived from
a model type which is widely applied in engineering and has a
large body of research associated with it (especially regarding fast
discretization techniques; see, e.g., Le Borne and Shahmuradyan,
2016).

In this paper, we apply SPRAT to simulate and mechanistically
explore the complex interactions between the different compo-
nents of the eastern Scotian Shelf ecosystem, specifically plankton
and fish populations, fisheries and climate. The SPRAT model was
implemented using a software engineering approach of the same
name, which we  presented earlier (Johanson et al., 2016; Johanson
and Hasselbring, 2014a,b).
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