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a b s t r a c t

The complexity of our mechanistic ecosystem (biogeochemical, eutrophication, phytoplankton, water
quality) models has not changed substantially since they were developed in the 1970s. Consequently,
there is now a large disconnect with contemporary problems (e.g., toxin production), knowledge of
biological and ecological processes (e.g., intracellular mechanisms, sediment bed overwintering) and
environmental observational technologies (e.g., metatransciptomics). This limits the utility of models
for making predictions and supporting management. There are several reasons against increasing com-
plexity, including (a) number of required assumptions, (b) risk of overfitting, (c) higher uncertainty, (d)
missing knowledge, (e) lack of observations for calibration and validation and (f) difficulty of developing,
running, analyzing and communicating the model. Here I review those arguments and conclude that, for
mechanistic, predictive ecosystem modeling, they either do not apply, are not a significant problem in
practice or can readily be solved by providing more resources to modelers. Further, a review of these
issues leads to the conclusion that more complexity generally increases the predictive skill of a model,
because more information is used to constrain it. This can be formulated as a new rule: more in, more
out (MIMO). MIMO suggests that more complex models make better predictions, but this should not be
adopted as a universal modeling strategy, because in practice, the difficulty associated with developing,
understanding and communicating complex models has to be considered. However, those are problems
readily solved by more resources and I argue that more funding needs to be made available to develop
complex ecosystem models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1942, the French microbiologist Jacques Monod published
an equation relating the growth rate of a microbial population to
the concentration of the limiting nutrient. Ever since, this (or the
equivalent Michaelis-Menten equation) has been the method of
choice for simulating resource-limited growth in ecological models
(Franks, 2009; Hellweger, 2015). There have been some advances,
such as using the internal (vs. external) nutrient level (Droop, 1968)
or resolving some intracellular speciation (Flynn et al., 1997), but
those have generally not been adopted into operational models.
This stagnation of our models is a stark contrast to the progress
made in the understanding of biological and environmental sys-
tems, where today’s knowledge must be orders of magnitudes
larger than what it was 75 years ago. There is also a disconnect with
modern problems, like trace metal transformation (e.g., mercury
methylation), proliferation of antibiotic resistance or toxin produc-
tion. This limits the utility of models for research and management.
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Lake Erie exemplifies the present situation. In the 1960s and
1970s the lake was highly eutrophic, which prompted large-scale
and expensive P loading reductions (i.e., wastewater treatment
plants, P detergent ban) resulting in an initial significant improve-
ment in water quality. However, since the mid-1990s the lake
is again eutrophic and now plagued annually by toxic Microcys-
tis blooms, which in 2014 led to the shutdown of the drinking
water supply of the City of Toledo (Bullerjahn et al., 2016; Steffen
et al., 2014a). Over the years, Lake Erie has served as a testbed
for water quality modeling and many excellent models have been
and continue to be developed for this system (Di Toro et al., 1987;
Verhamme et al., 2016). Current models can predict the size of the
annual bloom as a function of P loading, but they do not make
predictions of many important features, such as speciation (e.g.,
diatoms vs. Microcystis) or toxin production, do not include many
important biological and ecological processes (e.g., overwintering
in the sediment bed, Kutovaya et al. (2012)) that may affect how
the system responds to change, and do not produce output that
can be compared to modern observations (e.g., transcript levels,
Steffen et al. (2015)). Consequently their value to understanding
and managing this system is limited.
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Why are we not building more complex models? The level of
complexity is a constant debate in ecological modeling, whether
it is in the context of using models to develop general theory or
to make prediction (Anderson, 2005, 2010; Arhonditsis and Brett,
2004; Evans et al., 2013a; Evans et al., 2013b; Flynn, 2005; Franks,
2009; Fulton et al., 2003; Hood et al., 2007; John and Flynn, 2000;
Shimoda and Arhonditsis, 2016; Topping et al., 2015). Here I will
focus on the use of models for prediction (i.e., tactical modeling,
Evans et al. (2013b)), in the sense of forecasting how the concen-
tration of cyanobacteria toxins may change when nutrient input
is reduced, or how the carbon flux from the surface to the deep
ocean may change under a warmer climate. In this context, the
main arguments for keeping models simple can be summarized as
follows:

(a) Number of required assumptions. Occam’s Razor states that
among competing hypotheses (here models), the one with the
fewest assumptions should be selected. Therefore, unless the
complex models can clearly out-perform the simple ones, they
should not be used.

(b) Risk of overfitting. Complex models have more degrees of free-
dom and this can result in overfitting, where the model is
calibrated to noise in the observations, rather than the under-
lying functional relationship. This decreases the predictive skill
of the model.

(c) Higher uncertainty. Complex models are underdetermined or
overparameterized and often can produce the same results
using different parameterizations or model formulations. The
associated uncertainty propagates to the predictions and
increases their uncertainty.

(d) Missing knowledge. The understanding of processes, especially
biological, is limited and insufficient to support detailed mech-
anistic simulation.

(e) Lack of observations for calibration and validation. Complex
models produce more output, and the environmental observa-
tions needed to calibrate and validate them are not available.

(f) Difficulty of developing, running, analyzing and communicating
the model. Complex models are harder to develop, compute,
understand and communicate.

Here I review and challenge these arguments in the context of
mechanistic, predictive ecosystem modeling, by providing coun-
terarguments and making use of hypothetical and real-world
examples. Some of these arguments have been criticized previously
by others using the same or similar counterarguments (see refer-
ences below). My aim here is not to present only novel arguments
(although to my knowledge some are new), but to counter the case
against increasing complexity in a comprehensive manner.

The purpose of this paper is to critique the state of our predictive
ecosystem modeling. I want to state upfront that this criticism is
not directed at the modelers per se. For the most part they are doing
excellent work given the limited resources available. Rather, as I
argue below, the problem is one of resources made available to the
modelers and that is the responsibility of the entire environmental
science and engineering community

I find that the arguments against more complex models either
do not apply, are not a practical problem or can readily be solved
by providing more resources to modelers. Further, for most issues
I conclude that the value of a model increases with complexity,
because more information is used in the development or cal-
ibration. This leads to an alternate approach to evaluating the
complexity of models, where the usefulness of a model, in the con-
text of prediction, is a function of the amount of information that is
fed into it. This idea is summarized as “more in, more out (MIMO)”

2. Number of required assumptions

2.1. Argument

Occam’s Razor, also known as the law of parsimony, states that
among competing hypotheses, the one with the fewest assumptions
should be selected. In the context of modeling, this is often inter-
preted as support for fewer processes, components and parameters
(i.e., simpler models) (Elliott and Thackeray, 2004; Flynn, 2005;
Hodges and Rudnick, 2004; Shimoda and Arhonditsis, 2016).

2.2. Counterargument: any model makes assumptions about
every part of the system

The basic problem with applying Occam’s Razor to mechanistic
ecosystem models in this manner is that the complexity of a model
is not related to the number of assumptions made by the model. The
assumptions depend on the system being modeled and any model
makes assumptions about every part of the system. Simple mod-
els tend to assume that various components are constant and/or
mechanisms are not important, whereas complex models explicitly
include them. Rather, by adding more complexity we make more
of the assumptions explicitly (vs. implicitly when mechanisms are
ignored), which allows us to use more information to make the
model better.

2.3. Example phytoplankton diversity

Phytoplankton models now routinely include multiple species
or functional types (e.g., N-fixers), but the diversity in our models is
typically still far below that of their real-world counterparts. Does
increasing the number of species increase the number of assump-
tions made by a model? Consider two models of cyanobacteria in
a lake. The simple model lumps all cyanobacteria species into one
state variable and the complex models breaks them up into N-fixers
and non-N-fixers. For this example, let’s consider ammonia and
nitrate as limiting nutrient and assume the growth rate is simu-
lated using a Monod function that requires the specification of a
maximum growth rate (�max) and a half-saturation constant for
ammonia and nitrate (Km,NH4, Km,NO3). The simple model requires
specification of only three parameters, whereas the complex model
needs six. At the surface, this may suggest the complex model
makes more assumptions. However, the simple one-component
model also makes assumptions about �max, Km,NH4 and Km,NO3 for
N-fixers and non-N-fixers. It assumes they are all the same, but
this is also an assumption. So the number of species or param-
eters does not translate into the number of assumptions made.
Then the question becomes: Is assuming that all groups have the
same nutrient limitation parameters better than assuming they are
different? There is no reason to believe this, which suggests the
complex model is not any worse than the simple model. However,
the complex model can be informed by more knowledge. There is
evidence that non-N-fixing cyanobacteria are better competitors
for ammonia and worse competitors for nitrate (Blomqvist et al.,
1994), so when multiple species are included, this information can
be fed into the model. Unless we know absolutely nothing about the
properties of the added species, including them in the model will
open a gate to use more information and increase the value of the
model. How far beyond broad functional groups can this be taken?
Modern observational technology is increasingly able to character-
ize microdiversity. A recent study performed single-cell genomics
on over 1,000 cells of the marine cyanobacteria Prochlorococcus col-
lected near Bermuda, and found substantial differences. On average
1–5% of their genomes was different and much of these differences
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