EISEVIER

Contents lists available at ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/locate/apsoil

Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions

Rui Liu^{a,*}, Helen L. Hayden^b, Hangwei Hu^a, Jizheng He^a, Helen Suter^a, Deli Chen^a

- ^a Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
- ^b Department of Economic Development, Jobs, Transport and Resources, Victoria 3083, Australia

ARTICLE INFO

Keywords: Acetylene Nitrification inhibitor AOA AOB N_2O emission Temperature Moisture

ABSTRACT

Acetylene (C₂H₂) is an effective nitrification inhibitor targeting autotrophic ammonia oxidizers, and has shown promise for improving nitrogen use efficiency by mitigating greenhouse gas nitrous oxide (N2O) emissions and reducing nitrate leaching. Its efficacy, however, varies considerably with edaphic and environmental conditions and remains largely less studied in dryland agricultural soils. Here we conducted two laboratory microcosm incubations to explore the efficacy of C₂H₂ across various agricultural soils and under different conditions. The first incubation was with four agricultural soils at 25 °C and 60% water-filled pore space (WFPS), and the second incubation included one cropping soil under a range of conditions (15 °C, 25 °C, 35 °C and 50%, 70% WFPS). Our results showed that incubation of soil with 1% v/v C₂H₂ resulted in complete or partial inhibition of nitrification, N2O emission, and AOA or AOB growth under the experimental conditions. Acetylene can totally inhibit nitrification in acidic cropping and dairy pasture soils through retarding both AOA and AOB growth, while C2H2 partly inhibited nitrification and N₂O emission in the alkaline vegetable soil through impeding only AOB growth. The highest inhibition effect of C₂H₂ was achieved at 25 °C and 50% WFPS, while there was no inhibitory effect of C2H2 when soil was incubated at 15 °C and 50% WFPS suggesting soil temperature may have a significant influence on C₂H₂ effectiveness. The inhibition of C₂H₂ on cumulative N₂O emission increased with increasing temperature at 50% WFPS. In contrast, at 70% WFPS, the inhibition of C2H2 on cumulative N2O emission decreased with increasing temperature. Since the effect of C₂H₂ varied with soils and environmental conditions, this highlights the assumption that N2O production and nitrification can be affected by low concentrations of C₂H₂ may be not appropriate in some occasions.

1. Introduction

Nitrogen (N) is an essential nutrient for food production, but the amount of applied fertilizer N used by crops rarely exceeds 40% (Chen et al., 2008), and can be as low as 20% in vegetable production systems in Australia (Suter et al., 2014). The majority of applied N is lost from agro-ecosystems through ammonia (NH₃) volatilization, gaseous emission of nitrous oxide (N₂O) and di-nitrogen (N₂) and nitrate (NO₃ $^-$) leaching. Nitrous oxide is a potent greenhouse gas contributing significantly to global climate change with a 300-fold higher global warming potential than CO₂ (IPCC, 2007). It is also involved in the destruction of the protective ozone layer (Ravishankara et al., 2009). Soil ecosystems are the largest source of N₂O, accounting for approximately 65% of the atmospheric N₂O loading (IPCC, 2007). The major pathways of N₂O production in soils include microbial-mediated

nitrification and denitrification (Hu et al., 2015; Zhang et al., 2015). Microorganisms, such as ammonia oxidizers and bacterial denitrifiers, involved in the N cycle can directly regulate N_2O production and consumption from soils, and increased abundance and activity of these microorganisms may increase N_2O emissions (Burger et al., 2005).

Nitrification inhibitors (NIs) can decelerate the rate of soil nitrification by deactivating the enzyme ammonia monooxygenase (AMO) which catalyses ammonia oxidation, the first and rate-limiting step of nitrification which is encoded by the *amo*A gene within ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) (Zhang et al., 2012). NIs can block the growth of AOA and AOB (Di et al., 2010; Hink et al., 2016), and are widely used to improve N fertiliser efficiency, mitigate N₂O emissions and reduce NO₃ leaching in agricultural systems (Chen et al., 2008, 2010; Kelly et al., 2008; Di et al., 2010; Zhang et al., 2012; Hu et al., 2015). Acetylene (C₂H₂) is an

^{*} Corresponding author at: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia. E-mail address: rliu@unimelb.edu.au (R. Liu).

R. Liu et al. Applied Soil Ecology 119 (2017) 80-90

Table 1
Field site description and basic characteristics of soils used in this study.

Land use	Site name	Texture	pH (H ₂ O)	Clay	Sand	Slit	NH ₄ -N	NO ₃ -N	CEC	OC
				%			mg N/kg soil		Cmolc/kg	%
Cropping	Hamilton	Loam	4.5	19	44	38	13	93	9.42	6.2
Sugarcane	Bundaberg	Sand	6.0	5	90	5	2.6	8.8	2.6	1.2
Dairy pasture	Glenormiston	Loam	6.2	10	56	34	11	5.8	24	5.6
Vegetable	Boneo	Sand	7.8	1	91	8	1.1	19	6.9	0.8

effective inhibitor of bacterial ammonia oxidation (Offre et al., 2009), acting with AMO as a suicide substrate. It is usually used as an autotrophic nitrification inhibitor in experimental studies (De de Boer and Kowalchuk, 2001) and can inhibit nitrification at a low concentration (e.g.10 Pa) in most soils under aerobic conditions (Hyman and Wood, 1985; Schmidt and Bock, 1998; De Boer et al., 1991; Offre et al., 2009). In contrast, C₂H₂ does not efficiently inhibit ammonia oxidation by heterotrophic nitrifiers (Moir et al., 1996; Daum et al., 1998). Higher concentrations of C₂H₂ (1–20 kPa) will inhibit the N₂O reductase of denitrifying microorganisms (Davidson et al., 1986; Klemedtsson et al., 1988). As a result of this C₂H₂ has been used as a routine method to distinguish nitrification-related N₂O and denitrification-related N₂O in soils experiments based on the inhibition of soil ammonia oxidation (Bateman and Baggs, 2005; Butterbach-Bahl et al., 2013).

It is generally believed that low concentrations of C_2H_2 (0.1–10 Pa) totally inhibit nitrification (Hynes and Knowles, 1978; Berg et al., 1982) by forming a reactive epoxide which then irreversibly inactivates the AMO enzyme (Hyman and Wood, 1985), however, this does not always occur and its efficacy is considerably varied. While it was previously reported that 10 Pa of C_2H_2 totally inhibited nitrification (Wrage et al., 2004), Bremner and Blackmer (1978) found that 10 Pa only partially inhibited soil nitrification.

Acetylene was also widely used to determine the community compositions of nitrifiers in soils through laboratory work (Boyle-Yarwood et al., 2008; Scheer et al., 2014). Recent studies have shown however, that AOA and AOB may have a variety of responses to C₂H₂ application. Gubry-Rangin et al. (2010) and Offre et al. (2009) revealed that AOA growth was inhibited in C2H2-containing microcosms but not AOB growth. Liu et al. (2015a) demonstrated that both AOA and AOB were inhibited by C₂H₂ in three Australian agricultural soils. However, these results contrast with those of Jia and Conrad (2009), who found changes in the abundance of AOB amoA genes correlated best with nitrification rate rather than AOA amoA, and bacterial growth occurred only in actively nitrifying microcosms with added C2H2. Considering the various responses of AOA and AOB to C₂H₂ addition, it is therefore necessary to find out how soil factors influence the response of AOA and AOB to C2H2 addition and what are the key factors affecting the response of AOA and AOB to C2H2.

This study was designed to determine the impact of C₂H₂ on N₂O emissions, nitrification rates and the abundance of ammonia oxidizers in different agricultural soils under laboratory conditions. Microcosm incubation experiments were established under a set of controlled environment conditions with the following objectives: (i) to examine the effects of C₂H₂ on N₂O emissions and the abundances of AOA and AOB from different agricultural soils and (ii) to investigate the effects of C2H2 on N2O emissions and the abundances of AOA and AOB under different temperature and soil water contents in one agricultural soil. We hypothesized that (i) C₂H₂ would have significant inhibitory effects on nitrification and N2O production from soils with different physicochemical traits, and (ii) AOA and AOB would exhibit distinctly different responses to C2H2. This study represents comprehensive efforts to examine C2H2 efficacy from different soils under controlled conditions, and the findings from the study can improve our understanding of the interactions between soil microbial communities and the nitrification inhibitor C₂H₂ in different agricultural soils under laboratory controlled

conditions.

2. Materials and methods

2.1. Site description and soil sampling

The soils used in this study were collected from four agricultural sites in Australia: vegetable soil at Boneo, VIC (38.3°S, 144.9°E), sugarcane soil at Bundaberg, QLD (24.8°S, 152.3°E), dairy pasture soil at Glenormiston, VIC (38.2°S, 143°E), and cereal cropping soil at Hamilton, VIC (38.3°S, 142.7°E). At each site, 10 replicate samples of the top soil (0–10 cm) were collected, thoroughly homogenized, and transported on ice to the laboratory. Fresh soils were sieved through a 2.0 mm mesh, and root and leaf residues were removed with tweezers prior to the establishment of microcosms. Soil moisture contents were determined by oven-drying three subsamples (10 g of fresh soil) at 105 °C for 48 h. Soil texture (sieve and hydrometer procedures), pH (1:5 soil/water), total carbon (Dumas method) and other soil properties were determined and are shown in Table 1.

2.2. Soil microcosm incubations

2.2.1. The laboratory incubation with different agricultural soils

Soil microcosms were established in 500 ml vials containing 60 g of soils (oven-dry equivalent). Distilled water was added to soil to just under the final moisture content (60% water-filled pore space, WFPS) and the microcosms were pre-incubated at 25 °C for three weeks to stabilise soil microbial communities and minimise priming effects associated with wetting events. After pre-incubation, treatment was applied to each incubation vial to reach 60% WFPS (Linn and Doran, 1984). The treatments contained 100 mg N kg $^{-1}$ soil as exchangeable NH $_4$ -N and 50 mg N kg $^{-1}$ soil as NO $_3$ -N, which were added to the soil as 1) NH $_4$ Cl + KNO $_3$; and 2) NH $_4$ Cl + KNO $_3$ + C $_2$ H $_2$. Five ml of C $_2$ H $_2$ (1% v/v) was injected into the headspace of the vials using an airtight syringe. Aerobic conditions, soil moisture and C $_2$ H $_2$ contents in the vials were maintained every three days by opening microcosms and replenishing. Soil microcosms were incubated at 25 °C in the dark for three weeks.

2.2.1.1. Gas sampling and analysis. Gas samples were collected on days 0, 4, 8, 12, 16 and 20 after fertilizer application. Gas samples (20 ml) for N_2O analysis were taken from the 500 ml vials using gas-tight syringes. Prior to collection of gas samples, the vials were opened to ensure that N_2O concentration in the headspace was at ambient levels. During each sampling, gas samples were collected at 0, 8, 16, 24, 48 and 72 h after vials closure. Before gas collection, 20 ml compressed zero air was injected into 500 ml vials to maintain the pressure in the vials and then 20 ml gas samples were collected into a pre-evacuated 12 ml exetainer (Exetainer * , Labco Ltd., Lampeter, Ceredigion, UK). Samples were analysed for N_2O concentration by a gas chromatograph (Agilent 7890A) using an ECD (N_2O) detector.

2.2.1.2. Soil sampling and analysis. Soils were destructively sampled for soil mineral N analysis on days 0, 7, 14 and 21 immediately after gas sampling. There were four replicates at each sampling day. A subsample

Download English Version:

https://daneshyari.com/en/article/5742617

Download Persian Version:

https://daneshyari.com/article/5742617

<u>Daneshyari.com</u>