
Assessing the suitability of diversity metrics to detect biodiversity change

Luca Santini a,b,⁎, Jonathan Belmaker c,d, Mark J. Costello e, Henrique M. Pereira f,g,h, Axel G. Rossberg i,
Aafke M. Schipper j, Silvia Ceaușu f,g, Maria Dornelas k, Jelle P. Hilbers b, Joaquin Hortal l, Mark A.J. Huijbregts b,j,
Laetitia M. Navarro f,g, Katja H. Schiffers m, Piero Visconti n, Carlo Rondinini a

a Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell'Università 32, 00185 Rome, Italy
b Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
c Department of Zoology, Tel Aviv University, Tel Aviv, Israel
d The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
e Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand
f German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 Leipzig, Germany
g Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
h Infraestruturas de Portugal Biodiversity Chair, CiBiO/InBIO - Research Network in Biodiversity and Genetic Resources, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda,
1349-017 Lisboa, Portugal
i Department of Organismal Biology, School of Biological Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
j PBL Netherlands Environmental Assessment Agency, PO Box 30314, 2500 GH, The Hague
k Centre for Biological Diversity, University of St Andrews, Sir Harold Mitchell Building St Andrews KY16 9TH, Scotland UK
l Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/Jose Gutierrez Abascal 2, 28006 Madrid, Spain
m Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt (Main), Germany
n UNEP World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB2 ODL, UK

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 March 2016
Received in revised form 3 August 2016
Accepted 22 August 2016
Available online xxxx

A large number of diversity metrics are available to study andmonitor biodiversity, and their responses to biodi-
versity changes are not necessarily coherent with each other. The choice of biodiversitymetricsmay thus strong-
ly affect our interpretation of biodiversity change and, hence, prioritization of resources for conservation.
Therefore it is crucial to understand whichmetrics respond to certain changes, are the most sensitive to change,
show consistent responses across different communities, detect early signals of species decline, and are insensi-
tive to demographic stochasticity. Here we generated synthetic communities and simulated changes in their
composition according to 9 scenarios of biodiversity change to investigate the behaviour of 12 biodiversity met-
rics. Metrics showed diverse abilities to detect changes under different scenarios. Sørensen similarity index, ar-
ithmetic and geometric mean abundance, and species and functional richness were the most sensitive to
community changes. Sørensen similarity index, species richness and geometric abundance showed consistent re-
sponses across all simulated communities and scenarios. Sørensen similarity index and geometric mean abun-
dance were able to detect early signals of species decline. Geometric mean abundance, and functional
evenness under certain scenarios, had the greatest ability to distinguish directional trends from stochastic chang-
es, but Sørensen similarity index and geometric mean abundance were the only indices to show consistent sig-
nals under all replicates and scenarios. Classic abundance-weighted heterogeneity indices (e.g. Shannon index)
were insensitive to certain changes or showedmisleading responses, and are therefore unsuitable for comparison
of biological communities. We therefore suggest that separate metrics of species composition, richness, and
abundance should be reported instead of (or in addition to) composite metrics like the Shannon index.
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1. Introduction

In a period of rapid global change,monitoring biodiversity changes is
key to detect early warning signals of decline, infer the causes of such
decline, and develop effective conservation strategies to mitigate it
(Ash et al., 2009; Balmford et al., 2003, 2005; Buckland et al., 2005;
Butchart et al., 2010; Gregory et al., 2005; Nichols and Williams, 2006;
Tittensor et al., 2014). The multifaceted nature of biodiversity (Gaston,
1996; Purvis and Hector, 2000) is studied through a large number of
metrics. Differentmetricsmeasure different components of biodiversity
such as species richness, abundance, evolutionary history (i.e. phyloge-
netic diversity; Faith, 1992), and functional traits (Mason et al., 2005).
However, as no single metric captures all relevant aspects of biodiversi-
ty, none of them taken individually can provide a full picture of the pat-
terns of change. Further, metrics can even be misleading if considered
individually. For instance, the geometric mean abundance can increase
if rare species increase in abundance, while total abundance is decreas-
ing (Schipper et al., 2016). Similarly, invasive species can increase spe-
cies richness or functional and phylogenetic diversity, while having
negative impacts on the abundances of native species (Thomas, 2013;
Winter et al., 2009). The rate and direction of change in a metric may
also depend on idiosyncrasies in the state of the initial community,
and/or natural ecological succession.Moreover, in addition to direction-
al changes in biodiversity, species relative abundances may fluctuate
over shorter time frames due to demographic stochasticity or competi-
tive and predator-prey dynamics. This “noise” can confound the signal
of interest (i.e. directional change in response to a specific driver).

The choice and response of biodiversity metrics may strongly affect
our interpretation of biodiversity change and, hence, prioritization of re-
sources for conservation (Gaston and Spicer, 2004; Purvis and Hector,
2000). Thus, it is crucial to understand how alternative metrics respond
to specific changes, whichmetrics are the most sensitive in order to de-
tect early signals of biodiversity decline, and which ones respond con-
sistently to changes. Empirical datasets allow investigating how
metrics change in space and time, but have several limitations. These in-
clude the limited number of possible scenarios and communities repre-
sented, and the lack of control on the underlying cause of change, the
likely co-existence of several mechanisms of decline (e.g., decline of
habitat specialists due to the loss of their habitat type and decline of
large species due to overexploitation). This complicates the attempts
to link the behaviour of a diversity metric to a definite mechanism of
biodiversity change. Virtual datasets allow full control of both the com-
munity composition and the mechanism of decline, and thus allow the
comparison of the relative responses of the diversity metrics (Zurell et
al., 2010) by simulating ecological processes under alternative scenarios
(Dornelas, 2010; Lamb et al., 2009; Münkemüller and Gallien, 2015;
Olden and Poff, 2003; Supp and Ernest, 2014).

In this study, we explored the behaviour of a set of diversity metrics
under different scenarios of biodiversity change. To this end, we gener-
ated synthetic communities and simulated changes in their composition
to investigate the responses of the metrics. We recorded how metrics
changed over time under each scenario, and identified those that were
most sensitive to these community changes and showed a consistent re-
sponse irrespective of the state of the original community. We also
assessed non-linearity inmetrics responses, and their effect on our abil-
ity to detect early warning signals of biodiversity change. Finally, we
measured the signal-to-noise ratio (SNR) of themetrics under each sce-
nario to compare themetrics' ability to detect directional changes in bi-
ological communities.

2. Methods

2.1. Virtual dataset

We assumed a landscape area of 10,000 km2 consisting of two hab-
itats, one dominant and one secondary. For convenience wewill refer to

these habitats as forest and grassland, respectively. The size of the land-
scapewas chosen such that it was large enough to allow each species to
form a population from ~15 to N50,000 individuals. Forest covered a
random proportion between 0.7 and 0.9 of the entire landscape.

We generated 150 species, and randomly assigned to each a diet,
body mass, population density, and affinity level for each of the two
habitats. The number of species was chosen as a compromise between
representativeness of a biological community and computation time
for the simulations. For simplicity, we simulated static assemblages
with no interactions among species, and restricted the species pool to
the consumers in the community.

To simulate realistic communities, we followed established
macroecological rules. Specifically, our synthetic communities had the
following properties: 1) species in higher trophic levels tended to be
larger than species in lower trophic levels; and 2) smaller species
tended to be more common than large species (Fig. 1). This was imple-
mented as follows. We sampled a diet category for each species, where
herbivores (H), omnivores (O) and carnivores (C) had relative probabil-
ities of 0.5, 0.3 and 0.2 respectively. The body masses (kg) were then
sampled from log-normal distributions (Loder et al., 1997) reflecting
the negative relationship between trophic level and body mass (H:
log-mean = 0.5, log-SD = 1.5; C: log-mean = 0.5 multiplied by a ran-
dom value between 0.5 and 4, log-SD = 1.5; O: log-mean = mean be-
tween the log-mean for H and C, log-SD = 1.5; see predator-prey
body mass ratio reported by Brose et al., 2006). Based on the species'
body mass and diet category, we estimated population density (ind/
km2) for each species using allometric relationships (log population
density vs. log bodymass),where the slope of the relationshipwas sam-
pled from a normal distribution (mean = −0.75, SD = 0.1; Blackburn
and Gaston, 1997).

We assumed forest habitat to be richer in species than grassland
habitat: within the community, 40% of the species were exclusively for-
est specialists (affinity of 1 to forest and 0 to grassland), 20%were exclu-
sively grassland specialists (affinity of 1 to grassland and 0 to forest),
and 40%were ubiquitous. The affinity value of ubiquitous species to for-
est habitat was sampled from a symmetric beta distribution (shape pa-
rameters = 2; so that central values were more frequent than extreme
values), and the habitat affinity to grassland was equal to 1-affinity to
forest (i.e. the two affinity values summed to 1). The affinity values
were multiplied by the estimated species population abundance (in
turn obtained by multiplying density by habitat area) in each of the
two habitats to produce a realized abundance for each species.

Finally, we simulated two phylogenetic trees that described the re-
latedness among the species in the dataset. The first phylogenetic tree
assumed that species with similar traits are more phylogenetically sim-
ilar. For this, for each communitywe randomly sampled one ormore bi-
ological traits (body mass, diet, and affinity for the two habitats), and
used them to generate a distance matrix based on Gower's distance, as
it allows using both continuous and categorical data types (Gower,
1971). The phylogenetic tree was obtained by applying a neighbour
joining approach on the distance matrix. The second phylogenetic tree
assumed no dependency on biological traits. For this, we followed the
same procedure as described above, yet with biological traits randomly
shuffled across species before calculating the distance matrix.

2.2. Biodiversity change scenarios

To explore how metrics behave under diverse conditions, we pre-
pared nine scenarios of biodiversity change. Scenarios (Table 1) ranged
from the uniform or proportional decline of all species in the communi-
ty, to the decline of a subset of species sharing certain characteristics
(e.g. traits and relative abundance), to the change in the area available
for different species (i.e. extent of habitat). These scenarios span the
range of disturbances considered by Dornelas (2010), and expand it to
accommodate different susceptibilities to change among different
types of species. To measuremetrics' sensitivity to noise, we considered
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