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a  b  s  t  r  a  c  t

Dissolved  oxygen  content  is  one  of  the  most  important  parameters  in the  characterization  of  surface
water  conditions.  Our  goal  is to  make  a  forecast  of  this  parameter  in  Central  Europe’s  most  important
river  with  the use  of other,  easily  measurable  water  quality  parameters  (pH,  temperature,  electrical
conductivity  and runoff)  with  the  use  of  linear  and  nonlinear  models.  We  adapt  four  models  for forecasting
dissolved  oxygen  concentration,  namely  a Multivariate  Linear  Regression  model,  a  Multilayer  Perceptron
Neural  Network,  a Radial  Basis  Function  Neural  Network  and  a General  Regression  Neural  Network  model.
Data  is  available  for Hungarian  sampling  locations  on River  Danube  (Mohács,  Fajsz  and  Győrzámoly)  for
the period  of  1998–2003.  The  analysis  was  performed  with  four  alternative  combinations,  the models
were  formulated  using  data  from  the period  1998–2002  and  a dissolved  oxygen  forecast  was  made  for
2003.  Evaluating  model  performance  with  various  statistical  measures  (root  mean  square  error,  mean
absolute  error,  coefficient  of  determination,  and  Willmott’s  index  of agreement),  we  found  that  non-
linear  models  gave  better  results  than  linear  models.  In  two  cases  the  General  Regression  Neural  Network
provided  the  best  performance,  in  two  other  cases  the  Radial  Basis  Function  Neural  Network  gave  the
best  results.  A further  goal  was to conduct  a sensitivity  analysis  in  order  to identify  the parameter  with
the  highest  influence  on  the  performance  of  the  created  models.  Sensitivity  analysis  was  performed  for
the  combination  of  all three  sampling  locations  (4th combination)  and  it was found  that  for  all  three
neural  network  models  sensitivity  analyses  showed  that  pH  has  the  most  important  role  in  estimating
dissolved  oxygen  content.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To have a proper understanding of surface waters it is vital to
know the water quality parameters provided by the data of mon-
itoring networks. The operation of a monitoring network can be
improved considering various criteria (e.g. cost efficiency), or can
be facilitated by estimating certain parameters from other param-

Abbreviations: ANN, Artificial Neural Network; CA, CB, CC, CD, Combination A, B, C,
D; DO, dissolved oxygen; EC, electrical conductivity; GRNN, General Regression Neu-
ral  Network; hydro PP, hydro power plant; HNPP, Hungarian Nuclear Power Plant;
IA,  Willmott’s index of agreement; MAE, mean absolute error; MLPNN, Multilayer
Perceptron Neural Network; MLR, Multivariate Linear Regression; R2, coefficient of
determination; RBFNN, Radial Basis Function Neural Network; RF, runoff; rkm, river
kilometres; RMSE, root mean square error; WT,  water temperature.
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eters. The current article examines several parameters which can
be used for the estimation of dissolved oxygen.

Dissolved oxygen is a very significant parameter in the charac-
terisation of the condition of aquatic ecosystems, thus forecasting
its concentration using easily available and measureable parame-
ters may  be considered important scientific advantage. The sources
of dissolved oxygen (DO) in a water body include re-aeration
from the atmosphere, photosynthetic oxygen production, and DO
loading. The sinks include the oxidation of carbonaceous and
nitrogenous material, the oxygen demand of the sediment, and the
respiration of aquatic plants (Kuo et al., 2007). The concentration
of DO reflects the equilibrium, or the lack of one, between oxygen-
producing and oxygen-consuming processes (Ahmed, 2014). Thus,
the preservation of DO in water bodies is one of the primary con-
cerns for water resource managers.

The estimation and forecasting of the major parameters of sur-
face waters is typically performed using various types of artificial
intelligence based techniques relying on machine learning. This
requires training, validation (the latter can be omitted if data is
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scarce) and test sets. The creation of these sets can be undertaken
various ways. Most mainstream sources suggest random creation
of the respective sets (1), in this case the term ‘estimation’ or ‘mod-
elling’ should be used (Ahmed, 2014; Antanasijevic et al., 2014;
Basant et al., 2010; Emamgholizadeh et al., 2014; Heddam, 2014;
Rankovic et al., 2012, 2010; Talib and Amat, 2012; Wen  et al., 2013).
Other sources divide sets according to sampling points (2), assign-
ing the majority of sampling points to the training set, and a smaller
proportion of sampling points to the test set; in this case the cor-
rect terminology is ‘spatial forecasting’ (Dogan et al., 2009; He et al.,
2011a; Palani et al., 2008). Finally, some sources divide the tempo-
ral interval of measurement by assigning multiple initial years to
the training set and a couple of final years to the test set (3), in
this case ‘temporal forecasting’ is performed (Antanasijevic et al.,
2013; Ay and Kisi, 2012; Csábrági et al., 2015; He et al., 2011b;
Singh et al., 2009). This article proposes examples for the 3rd case,
temporal forecasting.

In the following some results are presented from temporal fore-
casting studies. Antanasijevic et al. (2013) compared three Artificial
Neural Networks (ANNs), namely, Multilayer Perceptron Neural
Network (MLPNN), General Regression Neural Network (GRNN)
and Recurrent Neural Network with Multivariate Linear Regression
(MLR) to the forecasting of DO in the River Danube at a single loca-
tion in Serbia, Bezdan. The data from the years 2004–2008 were
used as a training data set, and the data from 2009 were applied as
the test data set. The authors found that the Recurrent Neural Net-
work performed much better than the others. Singh et al. (2009)
developed two MLPNN models to forecast the biological oxygen
demand and DO concentration in the River Gomti, India, with the
help of 11 input water quality parameters. The entire water qual-
ity data set spanning 10 years was divided into three sub-sets; the
training set contained data from the first 6 years, the validation set
comprised data of the next 2 years, and the test data set consisted of
the data from the remaining final 2 years. The authors established
that the MLPNN was a powerful predictive tool in the computa-
tion of water quality parameters. Ay and Kisi (2012) developed and
compared two ANNs − the MLPNN and RBFNN − and MLR  for the
forecasting of DO concentration by using four parameters (tem-
perature (WT), pH, electrical conductivity (EC) and runoff (RF)) as
input in Foundation Creek, Colorado, USA. The whole data set was
collected from upstream and downstream USGS stations and the
training, validation and test data sets were divided by date of the
experimental data set. Comparison of the results showed that the
Radial Basis Function Neural Network (RBFNN) model performed
better than the MLPNN and MLR  models, and that the RBFNN model
was quite effective without the runoff parameter in DO concen-
tration forecasting. Finally, the downstream DO concentration was
successfully forecasted using only water temperature data of the
upstream station. He et al. (2011b) applied MLPNN and MLR  to
forecast the daily DO minimum and the daily DO variation in the
Bow River, Canada. The water quality parameters of 2006–2007 –
recorded at 15 or 30 min  intervals – of both sampling sites were
used for the training set and the test set contained the data from
2008. The DO minimum was forecast using water temperature and
runoff, and the input parameters for the estimation of daily DO vari-
ance were radiation, water temperature and runoff. In both cases
the MLPNN model outperformed the linear model.

Our main goal is to aid water quality management using esti-
mation procedures which optimise the operation of monitoring by
ensuring cost efficiency and representativity. This may be attained
by providing forecasts of DO-concentration, which is one of the
most important hydrochemical parameters, using easily measure-
able physical and chemical parameters. We  use the mainstream
approaches to reach our objective, i.e. MLR, and the various ANN
methods, and we provide (1) an efficiency ranking of these methods
for different combinations of sampling locations (see the details in

Section 2.1). (2) We  examine if there is a difference in the efficiency
of the respective estimations of the alternative combinations. For
reasons of economy, the reduction of the number of parameters
used could be considered; in this case, the models discussed can
effectively support decision-making. (3) Sensitivity analysis was
performed to identify those parameters with the highest impact
on estimation for all three non-linear models and the results were
evaluated.

2. Material and methods

2.1. Study area

The River Danube is a very important ecological and economic
factor in the region. Thus, the conservation and improvement of its
water quality is of primary importance to the future of the region.
The Danube is the second longest river in Europe, with a length of
2817 km from the Black Forest (Germany) to the Black Sea (Roma-
nia). The section in Hungary is 417 km long, with an average RF of
2000 m3/s. The construction of the Gabčikovo hydro power plant
(hydro PP) on the Slovakian-Hungarian border significantly altered
the Danube, with around 80% of the discharge being rerouted to
the Slovakian side and a RF of only 400 m3/s remaining on the Hun-
garian side. The river returns to its original riverbed at 1806 river
kilometres (rkm) (Kovács et al., 2015b). An additional notewor-
thy anthropogenic impact of the Hungarian Nuclear Power Plant
(HNPP) (Paks, at 1526 rkm) is the effect of the effluent coolant water
reaching the Danube, thus the effluent RF of the HNPP has a direct
effect on primary greenhouse gas emissions from the electricity
grid (Molnár, 2002).

There are 12 sampling sites in the section of the River Danube
flowing through Hungary (Fig. 1). The Mohács station (D11, 1451.7
rkm) was  chosen as an “undisturbed” representative location,
because this sampling site is not disturbed by tributaries or anthro-
pogenic installations. The sampling location D11 belongs to the
Section type 6 according to the results of Sommerhäuser et al.
(2003) and Liška et al. (2015). Further two locations, Győrzámoly
(D2, 1806.2 rkm) and Fajsz (D9, 1507.6 rkm) were considered
“noisy” locations and classified to the Section type 4 and the Section
type 5, respectively. The D2 sampling location is the first after the
sub-channel of the Gabčikovo hydro PP rejoins the Danube, while
D9 is the first sampling location after HNPP. The four combinations
used for the analysis were as follows, the first three considered
the individual data from Mohács, Fajsz and Győrzámoly, denoted
respectively as CA, CB and CC. Finally, the fourth combination simul-
taneously assessed the data from all three sampling locations (CD).

2.2. Water quality data set

The complete river water quality data set was divided into two
subsets. Data from 2003 were used as the test data set (26 data
samples on all sampling locations), and data from 1998 to 2002
were used as the training set (128 data samples in D11, 125 data
samples in D9 and 130 data samples in D2). The same training and
test sets were used in the application of each model.

The models required input parameters (in our case, measured
pH, RF (m3 sec−1), WT (◦C), EC (�S cm−1)) to generate the out-
put (forecasted DO (mg  L−1)). Input and target data (measured DO)
were entered into the applied models after the z-score normaliza-
tion technique had been applied (normalizing so the inputs and
targets have zero mean and unit standard deviation). The target
parameter corresponding to the input parameters belonged to the
same water sample, measured at the same time and location.

The descriptive statistics of the available data (Table 1) high-
lighted the fact that the parameters with the highest variance are
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