
Contents lists available at ScienceDirect

Ecological Engineering

journal homepage: www.elsevier.com/locate/ecoleng

Temporal dynamics of stormwater nutrient attenuation of an urban constructed wetland experiencing summer low flows and macrophyte senescence

^a School of Civil, Environmental and Mining Engineering, The University of Western Australia, Crawley, WA 6009, Australia ^b School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia

^c Cooperative Research Centre for Water Sensitive Cities, VIC 3800, Australia

ARTICLE INFO

Article history: Received 2 February 2016 Received in revised form 7 December 2016 Accepted 16 December 2016 Available online 12 March 2017

Keywords: Dissolved oxygen Macrophytes Metabolism Nutrient attenuation Stormwater Water Sensitive Urban Design Wetland restoration

ABSTRACT

The attenuation of urban stormwater nutrient is essential for maintaining ecological health of downstream waterways. Constructed wetlands (CWs) are widely used for stormwater management due to the economic and environmental benefits they create by attenuating nutrients. This research assessed stormwater nutrient attenuation in a surface flow CW located in Western Australia, by assessing data spanning decadal, seasonal and diurnal time-scales. The study site was built in 2004 and restored in 2010, and the significance of such restoration was also assessed in this research. The CW designed to minimize nutrient loads to downstream sensitive waterways despite experiencing Mediterranean climates with strong hydrological seasonality including prolonged low or no flow conditions during the dry summer periods and nutrient-rich pulses during the wet winter periods. Furthermore, seasonal ungauged water inputs and macrophytes senescence made the system complex to optimize nutrient attenuation. The annual average attenuation of nitrogen (N) and phosphorus (P) based nutrients were 2-4 times higher during the post-restoration periods than that observed during the pre-restoration periods. The attenuation of inorganic, organic, dissolved and total N was higher during the dry periods of the post-restoration regimes, while P species showed higher attenuation during the wet periods of the postrestoration regimes. Inorganic N showed greater attenuation than attenuation of inorganic P throughout the year. Baumea articulata and Schoenoplectus validus were the dominant macrophyte species across the site; B. articulata was estimated to store about 3 and 2 times higher N and P pools, respectively than that stored in S. validus. Low dissolved oxygen (DO) occurred in the site and DO showed a decreasing trend over the decade and a distinct diurnal signature of day-time peaks and night-time anoxia. Diurnal pattern in aquatic metabolism, defined as the daily fluctuation of DO levels within the water column of CW, was related to solar radiation and nutrient concentrations, and could be considered as a proxy of CW function. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

Water quality is declining in many urban areas due to nonpoint source nutrients, typically delivered via stormwater (Roy et al., 2008; Wong et al., 2012), leading to nuisance algal blooms and eutrophication in downstream waterways (Taylor et al., 2004; Hathaway et al., 2012). Stormwater and/or associated nutrient can also lead to habitat fragmentation, biodiversity loss and changes

E-mail addresses: tanveer.adyel@research.uwa.edu.au, tanveeradyel@gmail.com (T.M. Adyel).

http://dx.doi.org/10.1016/j.ecoleng.2016.12.026 0925-8574/© 2016 Elsevier B.V. All rights reserved. in the morphological and hydrological characteristics of the watercourses (Taylor et al., 2004; Walsh et al., 2005; Francey et al., 2010; Zgheib et al., 2012). As a result, management of stormwater quality has become an essential strategy to improve ecological integrity of drainage systems, and as a means to improve urban sustainability and liveability (Hatt et al., 2007; Wong et al., 2012; Deletic et al., 2013).

A paradigm shift in stormwater management has therefore been taking place in many cities around the world based on Integrated Stormwater Management System (ISWMS) and through adoption of Best Management Practices (BMPs). Such initiatives have been referred as Low Impact Development (LID) in the USA (Hinman, 2005), Sustainable Urban Drainage Systems (SUDS) in the UK (CIRIA, 2000) and Water Sensitive Urban Design (WSUD)

 $[\]ast\,$ Corresponding author at: The University of Western Australia, M015, Crawley, WA 6009, Australia.

Nomenciature		
General		
AHD	Australian Height Datum	
AGB	Above ground biomass	
ANZECC	Australian and New Zealand Environment and Con-	
	servation Council	
AWCB	Anvil Way Compensation Basin	
BGB	Below ground biomass	
BMPs	Best Management Practices	
BOD	Biochemical oxygen demand	
BoM	Bureau of Meteorology	
COD	Chemical oxygen demand	
CW	Constructed wetland	
DAFWA	Department of Agriculture and Food	
DEM	Digital Elevation Model	
DNRA	Dissimilatory nitrate reduction	
DO	Dissolved oxygen	
DoW	Department of Water	
Eh	Oxidation-reduction potential	
HRAP	Healthy River Action Plan	
HRT	Hydraulic retention time	
ISWMS	Integrated Stormwater Management System	
LID	Low Impact Development	
MSMD	Mills Street Main Drain	
SCP	Swan Coastal Plain	
SDC	Standardised delta concentration	
SDC_ave	Standardised delta concentration_averaged	
SERCUL	6	
SOD	Sediment oxygen demand	
SOD	Sediment oxygen demand	
SUDS	Sustainable Urban Drainage Systems	
WA	Western Australia	
WSUD	Water Sensitive Urban Design	
Numerico		
A _b	Biomass area (m ²)	
As	Sediment area (m ²)	
Bs	Sediment bulk density (kg/m ³)	
C_i	Nutrient concentration at <i>ith</i> timestep (mg/L)	
C _{inlet}	Nutrient concentration at the inlet (mg/L)	
C _{outlet}	Nutrient concentration at the outlet (mg/L)	
С*	Average nutrient concentration at the inlet and MSD	
DO	(mg/L)	
DOmay	Maximum DO saturation during the afternoon (%)	

DO _{max}	Maximum DO saturation during the afternoon (%)
DO _{min}	Minimum DO saturation during the morning (%)
D_s	Sediment depth (m)
DW_b	Dry weight of the biomass (kg)
EC	Electric conductivity (µS/cm)
L	Nutrient load (mg/s)
L_A	Nutrient load attenuation (%)
Li	Load at the inlet (mg/s)
Lo	Load at the outlet (mg/s)
NC _b	Biomass nutrient concentration (mg/kg)
NCs	Sediment nutrient concentration (mg/kg)
NM _b	Biomass nutrient mass (kg)
NM _s	Sediment nutrient mass (kg)
Q_b	Quadrat area as 0.0625 m ²
Q_i	Flow rate at <i>ith</i> timestep (m ³ /s)
Qoutflow	Discharge rate at the outflow (m ³ /s)
V	Volume of the AWCB (m ³)
ΔDO_{sat}	Delta DO saturation (%)

Nutrients and chemicals		
Al	Aluminium	
С	Carbon	
Ca	Calcium	
DIC	Dissolved inorganic carbon	
DIN	Dissolved inorganic nitrogen	
DOC	Dissolved organic carbon	
DON	Dissolved organic nitrogen	
DOP	Dissolved organic phosphorus	
Fe	Iron	
FRP	Filtered reactive phosphorus	
FTN	Filtered total nitrogen	
FTP	Filtered total phosphorus	
Mn	Manganese	
Ν	Nitrogen	
NH_3	Filtered ammonia	
NO_2	Filtered nitrite	
NO_3	Filtered nitrate	
NOx	Filtered total oxidised nitrogen	
NUON	Filtered non-urea organic nitrogen	
Р	Phosphorus	
PN	Particulate nitrogen	
PP	Particulate phosphorus	
TDC	Total dissolved carbon	
TKN	Total Kjeldahl nitrogen	
TN	Unfiltered total nitrogen	
TOC	Total organic carbon	
TP	Unfiltered total phosphorus	
UreaN	Filtered urea nitrogen	

in Australia (Lloyd, 2001). In general, WSUD are based on the idea that the management, protection and conservation of the urban water cycle must take place to ensure that the urban water environment is sensitive to natural hydrological, economic and ecological processes (Deletic et al., 2013), and that the ecological services of urban waterways are maintained (Brown et al., 2009). There are different WSUD elements are in practice for stormwater nutrient attenuation, and constructed wetland (CW) is one of them.

CWs have found widespread adoption over the past few decades due to their ability to treat and transform stormwater nutrient by utilizing different hydrological and biogeochemical processes. These processes take place within the water, soils/sediments, aquatic macrophytes and microbial assemblages of CWs (Carleton et al., 2000, 2001; Kivaisi, 2001; Mitsch and Gosselink, 2007; Vymazal, 2007). CWs vary widely in their performance ranging from 10 to 90% for nitrogen (N) and phosphorus (P), and in some cases they may increase nutrient levels (Malaviya and Singh, 2012; Saeed and Sun, 2012). The performance depends on numerous factors including the area and land use of the catchment, nutrient loading rate, hydro-climatological variability, macrophyte biomass, hydraulic retention time (HRT), groundwater connectivity and specific sediment/soil properties (Hamilton et al., 1993; Carleton et al., 2001; Gasperi et al., 2011; Zgheib et al., 2011, 2012; Tang et al., 2013). The degree of nutrient attenuation in CWs is controlled biogeochemically and/or hydrologically (Fink and Mitsch, 2007; Huang et al., 2011; Chang et al., 2013; Jahangir et al., 2016). N and P of stormwater experience different transformations depending on the CW's biogeochemical conditions. These conditions include oxygen concentrations, availability of a carbon (C) source, macrophytes and microorganism abundance, soil/sediment properties and degree catchment-riparian-hyporheic exchange (Kadlec and Knight, 1996). For example, a lack of oxygen supresses nitrificaDownload English Version:

https://daneshyari.com/en/article/5743811

Download Persian Version:

https://daneshyari.com/article/5743811

Daneshyari.com