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Harmful algal blooms in Lake Erie have been increasing in severity over the past two decades, prompting new
phosphorus loading target recommendations. We explore long-term drivers of phytoplankton blooms by
leveraging new estimates of historical bloom extent from Landsat 5 covering 1984–2001 together with existing
data covering 2002–2015. We find that a linear combination of springtime and long-term cumulative dissolved
reactive phosphorus (DRP) loading explains a high proportion of interannual variability in maximum summer-
time bloom extent for 1984–2015 (R2 = 0.75). This finding suggests that the impacts of internal loading are po-
tentially greater than previously understood, and that the hypothesized recent increased susceptibility to blooms
may be attributable to high decadal-scale cumulative loading. Based on this combined loading model, achieving
mildbloom conditions in Lake Erie (defined in recent studies as bloomareas below600 km2 nine years out of ten)
would requireDRP loads to be reduced by58% relative to the 2001–2015 average (equivalent to annual DRP load-
ing of 240 MT and April to July DRP loading of 78MT). Reaping the full benefits of load reductionsmay therefore
take up to a decade due to the effects of historical loading.
© 2017 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Lake Erie
Harmful algal blooms
Phosphorus load
Eutrophication models
Internal loading
Dissolved reactive phosphorus

Introduction

Water quality has declined in Lake Erie's eutrophic western basin
over the past two decades (Kane et al., 2014), characterized by an in-
creasing severity in summertime harmful algal blooms and extent of
hypoxic areas. This decline has prompted the revision of targets for
spring total and dissolved reactive phosphorus loading in Annex 4 of
the Great Lakes Water Quality Agreement (GLWQA, 2015, 2012). The
revisions were based on results from a multi-model effort at explaining
observed bloom severity (Scavia et al., 2016).

Despite relatively robust agreement among models about loading
targets, there is ongoing disagreement about the underlying processes
controlling bloom severity and the implications for system response.
One question is whether the lake is becoming more susceptible to large
blooms for a given amount of phosphorus loading (Obenour et al.,
2014; Scavia et al., 2016), and, if so, how the underlyingmechanisms im-
pact the loading reductions necessary for, and the timescales associated
with, system restoration. For example, internal phosphorus loading has
recently been suggested as a possible factor in explaining bloom severity

(Matisoff et al., 2016; Watson et al., 2016). As discussed in Scavia et al.
(2016), additional potential factors include meteorological conditions
(Michalak et al., 2013), the influence of dreissenid mussels on grazing/
phosphorus recycling (Vanderploeg et al., 2001), internal loading of
cyanobacteria cell inocula (Rinta-Kanto et al., 2009), co-limitation of ni-
trogen (Chaffin et al., 2013), and changes in the bioavailable fraction of
the phosphorus load (Baker et al., 2014).

Several studies have pointed to the lack of long-term historical data
on bloom severity as a limiting factor in improving understanding of un-
derlying processes (Bertani et al., 2016; Ho andMichalak, 2015; Stumpf
et al., 2016).Models used to inform recent targets for loading reductions
are based on remote sensing and in situ data for 2002 to 2015 (Bertani
et al., 2016; Stumpf et al., 2016; Verhamme et al., 2016). Processes oper-
ating on longer-term time scales (e.g., climate change impacts or the ef-
fects of internal loading) are especially difficult to probe without a
longer period of record.

Here, we leverage historical data on phytoplankton bloom extent
from Landsat 5 covering 1984–2011 (Ho et al., 2017) to supplement
existing data from theMEdium andModerate Resolution Imaging Spec-
trometers (MERIS and MODIS, respectively) covering 2002–2015 (ESA,
2016; NASA, 2016), in order to explore factors explaining the long-term
variability in Lake Erie phytoplankton blooms. We also present implica-
tions for required loading reductions and anticipated timescales for sys-
tem recovery.
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Methods

Long-term bloom records

We explore a long-term historical record of maximum summertime
bloom extents for 1984 to 2015, combining remotely-sensed estimates
from Landsat 5 (1984–2011), MERIS (2002−2011), andMODIS (2012–
2015) (Ho et al., 2017; Stumpf et al., 2016, 2012; Wynne et al., 2008).
The Landsat andMERIS/MODIS estimates are expected to be compatible
based on an analysis of the overlapping 2002–2011 period (Ho et al.,
2017).

We define a composite time series based on Landsat for 1984–2009
and 2011, MERIS for 2010, and MODIS for 2012–2015 (Fig. 1 and solid
line in Fig. 2). We rely on Landsat for the period overlapping with
MERIS (2002–2011) to maximize coherence with the longer preceding
period (1984–2001). The exception is for 2010, when clouds obscured
Landsat scenes during peak bloomactivity (Ho et al., 2017). A sensitivity
analysis using MERIS for 2002–2005 and 2007–2011, and Landsat for
1987–2001 and 2006 (dashed line in Fig. 2) yielded consistent conclu-
sions. Landsat was used for 2006 in the sensitivity analysis due to data
gaps inMERIS during peak bloom activity that year (see Ho et al., 2017).

Ancillary data

Observations of maximum summertime bloom extent are analyzed
using discharge and phosphorus loading measurements from the Mau-
mee River, the main tributary driving bloom severity for Lake Erie
(Scavia et al., 2016). Daily total phosphorus (TP) and dissolved reactive
phosphorus (DRP) concentration data are available from theHeidelberg
University National Center for Water Quality Research (Heidelberg
University NCWQR, 2015; Stow et al., 2015). Daily mean discharge
data are available from the USGS Station at Waterville, Ohio (USGS,
2016). Total monthly loads are estimated by multiplying discharge
with TP or DRP concentration and summing daily loads. Missing con-
centration data are imputed by taking the average of the closest
10 days of data, similar to Obenour et al. (2014).

Because recent studies have suggested that total bioavailable phos-
phorus (TBP) may be the strongest predictor of bloom severity (Bertani
et al., 2016; Stumpf et al., 2016), we also calculate TBP as:

TBP ¼ DRPþ θ TP−DRPð Þ ð1Þ

where (TP−DRP) represents the particulate form of phosphorus (under
the assumption that all dissolved phosphorus is reactive), and θ is the
fraction of particulate phosphorus that is bioavailable. DRP is assumed
to be 100% bioavailable (Baker et al., 2014). Two values of θ, 0.138 and

0.63, have been proposed in the literature and are considered here. The
first is based on θ= β(1− S), where β=0.23 is the bioavailable fraction
of particulate phosphorus and S = 0.4 is the fraction that settles out of
the water (Stumpf et al., 2016). The second is estimated using a Bayesian
hierarchical model of bloom severity that also includes several other
parameters (Bertani et al., 2016).

Model development, comparison, and projection

We use multiple linear regression to model maximum summertime
bloom extent as a function of TP, DRP, TBP, and/or discharge aggregated
to different timescales. We limit the linear models to at most two pre-
dictors to focus only on the most parsimonious models and to avoid
the possibility of over-fitting. We also perform leave-one-out cross-
validation to assess model robustness (e.g., Chatfield, 2006; Obenour
et al., 2014).

We consider all possible aggregations of discharge, TP, DRP, and TBP
over consecutive months from January to September; we include a very
broad range of months in the interest of being conservative. Given re-
cent suggestions in the literature that internal loading may be a factor
in driving bloom severity (e.g., Matisoff et al., 2016),we also include sin-
gle andmultiple water year aggregations of TP, DRP, TBP, and discharge,
ranging from only the current water year and going back up to 20 years
total. For two-predictor models (i.e. ones that include bothmonthly and
yearly aggregations) we truncate the cumulative loading term for the
current water year such that the same month does not appear in both
terms. Because regularmonitoring of phosphorus loading from theMau-
mee River began in 1975 and the bloom extent observations begin in
1984, for cumulative loading exceeding 10 years we assume that any
missing years have loading equal to the average over the available
years preceding a given bloom year. Additional sensitivity and robust-
ness checks are described in the Results, Discussion, and Electronic Sup-
plementary Material (ESM) Appendix S1.

For comparison, we also implement two existing models that have
been used to guide nutrient load targets, namely the U-M/GLERLWest-
ern Lake Erie HAB model (Bertani et al., 2016; henceforth U-M/GLERL
model for brevity) and the NOAA Western Lake Erie HAB model
(Stumpf et al., 2016; henceforth NOAA model for brevity). For the U-
M/GLERL model, we use the posterior means for the six parameters re-
quired by the model as listed in Bertani et al. (2016), which were cali-
brated using data for 2002–2014. The model is based on monthly TBP
loading for February through June (with February receiving a lower
weight than March–June) and on calendar year for modeling the long-
term trend. For the NOAA model, we use published coefficients for
March–July TBP loading, and weigh July twice as much as March–June
but only include it for years with warm Junes, for consistency with

Fig. 1. Historical record of maximum summertime bloom extents from Landsat (1984–2011), MERIS (2002–2011), and MODIS (2012–2015).
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