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ABSTRACT

Quantitative assessment of the pigment phycocyanin (PC) in cyanobacterial blooms is essential to assess their
abundance and distribution and consequently aid their management in many recreational waters within inland
and coastal environments. In contrast to the open-ocean waters, these water bodies are very complex with a pro-
nounced heterogeneity of their optical properties, and hence accurate retrieval of the water-leaving radiances
and PC concentration from satellite observations is notoriously difficult with existing algorithms. In the present
study, a new inversion algorithm is developed as a rapid cyanobacteria bloom assessment method and its re-
trievals of PC are compared with in-situ and satellite observations and those from a previously reported inversion
algorithm. The new algorithm estimates PC concentration on the basis of the unique absorption feature of phy-
cocyanin at 620 nm which is isolated from the total pigment absorption by taking advantage of the well-
recognized absorption and reflectance features in the red and near-infrared (NIR) wavelengths (less impacted
by the influences of the overlapping absorption signatures of the mixture constituents and pigment packaging).
The by-products of this work include chl-a concentration and predictions from reflectance data to monitor the
cyanobacterial component and non-cyanobacterial component of the phytoplankton assemblage and to evaluate
PC:Chl-a pigment weight ratios for specific water types. Initial validation of the algorithm was performed using
in-situ field data in turbid productive waters dominated by phycocyanin and other pigments, yielding coefficients
of determination and slope close to unity and mean errors less than a few percent. These results suggest that the
algorithm could be used as a rapid assessment tool for the remote-sensing assessment of the spatial distribution
and relative abundance of cyanobacterial blooms in many regional water bodies.

© 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.

Introduction

Blooms of cyanobacteria (commonly referred to as blue-green algae)
have been increasingly reported for a number of water bodies, including
lakes, rivers, coastal and ocean waters. Prolific cyanobacterial growth
and subsequent development of mass populations that are often depen-
dent on factors such as a warming climate, light availability, changing
landuse practice and eutrophication (Johnk et al., 2008; Paerl and
Huisman, 2008; Hunter et al., 2010) are serious concerns because they
can pose significant threats to water quality (e.g., it hampers recreational
use, leads to hypoxia, reduces esthetics, and causes taste and odor prob-
lems) and risks to human and animal health (Codd et al., 1999;
Carmichael et al., 2001; Brient et al., 2008; Hunter et al., 2009; Kudela
etal, 2015). Many genera of cyanobacteria are capable of producing var-
ious forms of toxins (cyanotoxins) including neurotoxins, hepatotoxins,
cytotoxins, genotoxins and endotoxins (Codd et al.,, 2005; Metcalf et al.,
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2008; Hunter et al., 2010), thus exposure to the toxic cyanobacterial
blooms can result in incidences of diseases in humans such as skin irrita-
tion, gastrointestinal illnesses, cancer and tumors (associated with pow-
erful hepatotoxins such as microcystins) and significant environmental,
ecological and economic effects (Carmichael et al., 2001; Pilotto et al.,
1997). In recognition of the severity of these risks posed by
cyanobacterial blooms, a greater emphasis has been placed in recent
years on the prediction of the locations and timing of these algal blooms
for improving various management and mitigation activities.

Detection and monitoring of cyanobacterial blooms are generally
achieved through the photosynthetic bio-marker pigment phycocyanin
(PC), which exhibits a distinct diagnostic absorption feature at ~620 nm
(Glazer et al., 1973) easily detected from remote sensing reflectance
data using a wavelength range of 615-630 nm (Ogashawara et al.,
2013; Kudela et al., 2015). This unique optical signature of cyanobacteria
can be used as a good candidate for remote-sensing based techniques for
the quantification of PC in spatially and temporally variable water bodies,
wherein conventional in-situ point scale sampling can be less effective for
describing pronounced patchiness in the distribution of cyanobacterial
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blooms (Ruiz-Verd et al., 2008; Wheeler et al., 2012). Further complica-
tions with in-situ sampling are in its inability to elucidate the nature of
processes controlling a bloom's spatial and temporal distribution
(Hunter et al., 2008b). Remote-sensing-based techniques for detecting
and monitoring the distribution of algal blooms have proven effective
(Shanmugam et al., 2008, 2011, 2013), however some potential issues
are associated with these techniques including the necessity to achieve
sufficient spatial and spectral resolution to resolve fine-scale patchiness
of cyanobacterial blooms and detect their PC absorption feature in remote
sensed data (Kudela et al., 2015), to separate PC from the chlorophyll-a
(chl-a) absorption feature (Ruiz-Verdd et al., 2008 and references
therein), and to improve the atmospheric compensation and bio-optical
algorithms in turbid productive waters (Kudela et al., 2015; Singh and
Shanmugam, 2014; Varunan and Shanmugam, 2015).

Current approaches to detect and describe cyanobacterial blooms
from remote sensing data are based on the reflectance spectral curva-
tures or optical relationships between the reflectance band ratios and
the PC absorption or pigment. In particular, they rely on (i) semi-
empirical (Simis et al., 2005, 2007; Randolph et al., 2008) or nested
semi-empirical algorithm approaches (Dekker, 1993), (ii) relationships
of single or multiple reflectance/radiance band ratios having the phyco-
cyanin information with the measured PC concentration (Schalles and
Yacobi., 2000; Vincent et al., 2004; Hunter et al., 2009; Li et al., 2010;
Mishra et al., 2009; Sun et al., 2011, 2013, 2015), (iii) three-band reflec-
tance algorithms (Hunter et al.,, 2010; Mishra et al., 2014) originally de-
signed for the estimation of chl-a concentration (Gitelson et al., 2003),
(iv) decomposition of phytoplankton absorption at 620 nm (Mishra
etal, 2013b; Matthews et al,, 2013), and (v) new techniques formulated
on the basis of the reflectance band architecture (Kudela et al., 2015, Qi
et al., 2014; Song et al., 2014).

Semi-empirical algorithms

Dekker (1993) developed a nested semi-empirical algorithm that
uses the relative magnitude of the reflectance at 620 nm extracted
through a reference baseline between 600 nm and 648 nm. This ap-
proach is susceptible to poor predictions because of its sensitivity to
other confounding photo-pigments (e.g., chl-a) other than PC concen-
tration (Mishra et al., 2009). Simis et al. (2005) proposed a semi-
empirical inversion algorithm which estimates the PC and chl-a absorp-
tion values at 620 nm based on some assumptions (to avoid the com-
plexities in modeling), reflectance band ratios and inherent optical
properties (IOPs such as backscattering and absorption). This algorithm
has been widely used for the estimation of PC as it provides some phys-
ical meaning and achieves good accuracy. However, inappropriate as-
sumptions and simple band ratios with this algorithm cause an
overestimation of PC at low concentrations and the error was more pro-
nounced when PC:Chl-a ratio increased for samples with elevated ac-
cessory pigments (Simis et al., 2007). To minimize the overestimation
of PC, a correction factor for the absorption by accessory pigments in
the 620 nm band was introduced by Simis et al. (2005, 2007).
Randolph et al. (2008) validated the Simis et al. (2005) algorithm
using a data set that consisted of PC pigment concentrations and PC ab-
sorption coefficients (apc) derived from the power law instead of the
mean PC specific-absorption coefficients (ap¢). Because the apcvalues
vary with season and locations, some of the model's coefficients needed
to be optimized for yielding accurate estimates of PC.

Empirical algorithms

Several empirical algorithms were developed based on the reflec-
tance band ratio(s) to estimate PC concentration in inland and near-
coastal water bodies (Schalles and Yacobi, 2000; Vincent et al., 2004;
Mishra et al., 2009; Hunter et al., 2009; Li et al., 2010; Sun et al., 2011,
2013, 2015). A simple model was developed by Schalles and Yacobi
(2000) which uses the relationship of reflectance band ratio

(considering peak and trough around 650 nm and 625 nm) and mea-
sured PC concentrations. Though this model has the advantage of its
simplicity, the influence of chl-a absorption was not corrected and
thus it greatly affected the model results in turbid productive inland wa-
ters (Simis et al., 2007). Vincent et al. (2004) designed a model that di-
rectly relates the reflectance band ratio (using all the bands except the
6th band in Landsat 7 ETM +) with the PC concentration for remotely
detecting and monitoring the cyanobacterial blooms. However, the sen-
sitivity of this model was weak because the chosen reflectance or radi-
ance signal beyond 750 nm contains less information regarding the
phycocyanin signal (Kutser et al., 2006).

Multi-band algorithms

In other studies (Hunter et al., 2009; Mishra et al., 2009; Li et al.,
2010; Sun et al., 2015), empirical algorithms were proposed which
experimented with the relationships of single or multi-band reflectance
ratios and PC concentrations. These methods are dependent on a set co-
efficients that are restricted to certain specific water bodies or inade-
quate for describing the cyanobacterial bloom seasonal variability.
Ogashawara et al. (2013) evaluated the performance of several existing
reflectance-based models (Dekker, 1993; Schalles and Yacobi, 2000;
Simis et al. 2005; Mishra et al., 2009; Hunter et al., 2010) with samples
collected from two different locations and demonstrated that the
reflectance-based algorithm employing R,s(724)/R,s(600) gave better
estimates of PC concentration. Many of the above reflectance band-
ratio algorithms are limited in application to the location and acquisi-
tion date of the data from which they are derived (Matthews et al.,
2010), which imply that they need to be tuned using local data. More-
over, conventional band ratio algorithms do not employ a correction
for minimizing the influence of accessory pigments on the retrieval of
PC which makes them less robust and transferrable to water bodies
with low PC concentrations.

Absorption decomposition

To overcome some of these issues with simple band-ratio ap-
proaches, recent studies have focused on decomposing the phytoplank-
ton absorption at 620 nm and incorporating a correction for chl-a
absorption for improving the PC retrieval (Mishra et al., 2013b;
Matthews et al., 2013). In Mishra et al. (2013b), the PC absorption at
620 nm was estimated by solving the two algebraic equations that de-
scribe the phytoplankton absorption at 665 nm and 620 nm (on the
basis of two coefficients ¢s; and ¢s») with the assumption of negligible ac-
cessory pigments at these wavelengths. In Matthews et al. (2013), the
chl-a absorption at 620 nm (dcp.4(620)) was derived from the phyto-
plankton absorption (a,(665)) using the (¢) values. The estimated
Acni-a(620)) values were then subtracted from a,,(620) in order to de-
rive apc(620) and subsequently estimate PC concentration using
apc(620) values. These methods gave fairly good PC retrievals although
being constrained to rely on the fixed coefficients (&) (Matthews et al.,
2013) and optimized mean values (i, > and ap¢(620) (Mishra et al.,
2013b).

Reflectance band architecture

More recently, Qi et al. (2014) proposed a new algorithm for the
quantification of PC concentration using a baseline approach that uses
two wavelengths (560 and 665) to determine a reference baseline,
and relates PC concentration to the reflectance at 620 nm measured
from the midpoint of the baseline. This algorithm based on field reflec-
tance was applied to MERIS Rayleigh-corrected (aerosol + water signal)
reflectance with adjustment of the empirical coefficients because of
known atmospheric compensation problems in turbid productive and
phytoplankton-dominated waters. In remote sensing of less turbid, op-
tically shallow near-shore and inland waters, the bottom effect can be a
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