
ORIGINAL ARTICLE

Periodicity computation of generalized

mathematical biology problems involving delay

differential equations

M. Jasim Mohammed
a
, Rabha W. Ibrahim

b,*, M.Z. Ahmad
a

a Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Arau Perlis, Malaysia
bFaculty of Computer Science and Information Technology, University, Malaya 50603, Malaysia

Received 21 September 2016; revised 29 December 2016; accepted 7 January 2017

Available online 26 January 2017

KEYWORDS

Fractional calculus;

Fractional differential

equation;

Fractional differential

operator;

Population model

Abstract In this paper, we consider a low initial population model. Our aim is to study the peri-

odicity computation of this model by using neutral differential equations, which are recognized in

various studies including biology. We generalize the neutral Rayleigh equation for the third-order

by exploiting the model of fractional calculus, in particular the Riemann–Liouville differential oper-

ator. We establish the existence and uniqueness of a periodic computational outcome. The tech-

nique depends on the continuation theorem of the coincidence degree theory. Besides, an

example is presented to demonstrate the finding.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biocomputing is proposed as the procedure of constructing
models that use biological materials. The class of neutral dif-
ferential delay equations is the most popular model in Biocom-
puting. It was introduced by the famous British mathematical

biologist, Lord Rayleigh, as follows:

x00ðtÞ þ fðx0ðtÞÞ þ axðtÞ ¼ 0: ð1Þ
Eq. (1) is extended into a third order by various authors.
Abou-El-Ela et al. (2012) discussed a criterion for the existence

of periodicity to third order neutral delay differential equation
with one deviating argument as below:

x000ðtÞ þ ax00ðtÞ þ gðx0ðt� sðtÞÞÞ þ fðxðt� sðtÞÞÞ ¼ pðtÞ: ð2Þ
Using the idea of the fractional calculus (see Podlubny,

1999), Eq. (1) is developed (see Ibrahim et al., 2016a,b,c).
Recently, Rakkiyappan et al. (2016) presented the periodicity

by applying fractional neural network model.
The objective of this work is to give new appropriate

conditions for guaranteeing the existence and uniqueness of

a periodic solution of fractional differential equation of order
3l (0 < l < 1) with two deviating arguments, taking the
form
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D3luðtÞ þWðu0ðtÞÞu00ðtÞ þ uðuðtÞÞu0ðtÞ þ #1ðt; uðt� e1ðtÞÞÞ
þ #2ðt; uðt� e2ðtÞÞÞ ¼ pðtÞ; ð3Þ

where D3l is the Riemann–Liouville fractional differential
operator of order 3l, W;u; e1; e2; p : R ! R and #1; #2 :
R�R ! R are continuous functions e1, e2 and p are periodic,
#1 and #2 are periodic in their first argument and T > 0.

2. Material and methods

For convenience, we let

jujj ¼
Z T

0

juðtÞjjdt
� �1

j

; j P 1; juj1 ¼ maxt2½0;T�juðtÞj;

jpj1 ¼ maxt2½0;T�jpðtÞj and �p ¼ 1

T

Z T

0

pðtÞdt:

Let the following sets

X ¼ fuju 2 C2ðR;RÞ; uðtþ TÞ ¼ uðtÞ; for all t 2 Rg
and

! ¼ fyjy 2 CðR;RÞ; yðtþ TÞ ¼ yðtÞ; for all t 2 Rg
are be two Banach spaces with the norms

jjuXjj ¼ maxfjuj1; ju0j1; ju00j1g and jjyjj! ¼ jyj1:

Outline a linear operator L : DomðLÞ � X ! ! by setting

DomðLÞ ¼ fuju 2 X;D3luðtÞ 2 CðR;RÞg;
and for u 2 DomðLÞ,
Lu ¼ D3luðtÞ: ð4Þ

We as well term a nonlinear operator N : X ! ! by setting

N u ¼ �Wðu0ðtÞÞu00ðtÞ � uðuðtÞÞu0ðtÞ � #1ðt; uðt� e1ðtÞÞÞ
� #2ðt; uðt� e2ðtÞÞÞ þ pðtÞ: ð5Þ

Therefore, we have seen that KerL ¼ R, dimðKerLÞ ¼ 1;

Im L ¼ fyjy 2 !;
R T

0
yð1Þd1 ¼ 0g is a subset of ! and dim

ð!=ImLÞ ¼ 1, which implies diomðIm LÞ ¼ dimðKerLÞ.
So the operator L is a Fredholm operator with index zero.

Now we define a nonlinear operator as follows:

Lu ¼ aN u; a 2 ð0; 1Þ;
D3luðtÞ þ afWðu0ðtÞÞu00ðtÞ þ uðuðtÞÞu0ðtÞ

þ #1ðt; uðt� e1ðtÞÞÞ þ #2ðt; uðt� e2ðtÞÞÞg ¼ apðtÞ; ð6Þ
where the Riemann–Liouville fractional differential operator is
defined as follows:

DluðtÞ ¼ 1

Cð1� lÞ
d

dt

Z t

0

ðt� sÞ�l
uðsÞds; 0 < t < 1:

We need the following outcome:
Method 2.1 (Continuation method) Assume that X and Y

be two Banach spaces. Supposing that L : DomðLÞ � X ! !
is a Fredholm operator with index zero and N : X ! ! is

L-compact on F , where F is an open bounded subset in

X. Furthermore, let the next conditions are satisfied:

(a) Lu– aN u; for all u 2 xF \ DomðLÞ; a 2 ð0; 1Þ;
(b) N u R ImL; for all u 2 xF \ KerL;
(c) The Brower degree degfQN ;F \ KerL; 0g–0:

Then Lu ¼ N u has at least one solution on �F \DomðLÞ.
Moreover, we need the following assumptions in the sequel:

(i) Suppose that there exist non-negative constants A1; A2;
B1; B2; C1 and C2 such as

jWðyÞj 6 A1; jWðy1Þ �Wðy2Þj 6 A2jy1 � y2j

For all y; y1; y2 2 R,

juðuÞj 6 C1; juðu1Þ � uðu2Þj 6 C2ju1 � u2j
For all u; u1; u2 2 R and

j#ıðt; tÞ � #ıðt; mÞj 6 Bıjt� mj
For all y; t; m 2 R; ı ¼ 1; 2.

(ii) Assume that the subsequent conditions are satisfied:

(H1) One of the next conditions holds

(1) ð#ıðt; tÞ � #ıðt; mÞÞðt� mÞ > 0 for all t; t; m 2 R; t–m;
ı ¼ 1; 2;

(2) ð#ıðt; tÞ � #ıðt; mÞÞðt� mÞ < 0 for all t; t; m 2 R; t–m;
ı ¼ 1; 2;

(H2) There exists d > 0 like one of the following conditions
holds

(1) uf#1ðt; uÞ þ #2ðt; uÞ � �pg > 0 for all t 2 R; juj > d;
(2) uf#1ðt; uÞ þ #2ðt; uÞ � �pg < 0 for all t 2 R; juj > d;

If u(t) is a periodic solution of (6), then

juj1 6 dþ 1

2

ffiffiffiffi
T

p
ju0j2: ð7Þ

(iii) Assume that (i) and (ii) hold such that

(iv)

Cð3lþ 1Þ A1

T

2
þ C1

T2

4
þ ðB1 þ B2ÞT

3

8

� �
< 1: ð8Þ

If u(t) is a periodic solution of (3), then

ju00j1 6 ½ðB1 þ B2ÞdþMþ jpj1�T
2 1

Cð3lþ1Þ � A1
T
2
� C1

T2

4
� ðB1 þ B2Þ T3

8

n o ¼ j;

M :¼ maxfj#1ðt; 0Þj þ j#2ðt; 0Þj : 0 6 t 6 Tg:
(v) Assume that (i)–(iii) hold. Also let the next condition

holds

Cð3lþ 1Þ A1

T

2
þ ðA1jþ C1ÞT

2

4
ðB1 þ B2Þ þ C2j

T

8

� �
< 1: ð9Þ

3. Results

We impose the periodicity computation of the generalized neu-
tral equation (3) in the following result:

Result 3.1: Assume that (i) - (iv) hold. Then (3) has a unique

periodic solution.
Demonstration: Condition (iv) implies that (3) has at most

one periodic solution. Therefore, it is enough to prove that
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