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a b s t r a c t

After use and disposal of chemical products, many types of polymer particles end up in the aquatic
environment with potential toxic effects to primary producers like green algae. In this study, we have
developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse
polymers which are capable to estimate green algae growth inhibition (EC50). The model (N ¼ 43,
R2 ¼ 0.73, RMSE ¼ 0.28) is a regression-based decision tree using one structural descriptor for each of
three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well
as copolymers and does not require information on the size of the polymer particle or underlying core
material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not
included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic
polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were
the mechanisms of action. For anionic polymers, specific properties of the polymer and test character-
istics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when
combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant
mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer
charge density and backbone flexibility.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Use of chemical substances is regulated in various national and
international legal frameworks. In Europe, chemicals can be mar-
keted only if the tonnage is below a threshold of 1 tonne or after the
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possibility of ‘safe use’ has been demonstrated in a REACH regis-
tration dossier (ECHA, 2012). ‘Conventional’ chemicals, such as
polycyclic aromatic hydrocarbons (PAH) and other persistent
organic pollutants (POPs) have been studied and evaluated exten-
sively (Verbruggen, 2012); fate- and effect models exist to aid
chemical safety analysis (Chen et al., 2006). For ‘emerging pollut-
ants’, suchmodels are available to a much lesser extent, particularly
so for micro- and nano-sized particles (Braakhuis et al., 2015;
Leszczynska and Shukla, 2009). While there are methods available
that can estimate the effects of individual parent monomers (ECHA,
2012; Netzeva et al., 2007), the polymeric versions of the com-
pounds are often left unevaluated. It is important to study the
potential effects of nano- and micron-sized polymers because they
represent a wider used class of potential pollutants. It is generally
assumed that the increase in size relative to themonomer causes an
overall decrease in toxicity (Congress 1983; Bergmann et al., 2009).
However, this assumption was found incorrect for certain chemical
species which exert higher toxicity than their individual constitu-
ents, like in the case of asbestos and cationic antimicrobial poly-
mers (Boulanger et al., 2014; Uppu et al., 2016; Tsuji et al., 2006).
Upon their release in the aquatic environment (Lambert and
Wagner, 2016), nano and micro polymers have several potential
detrimental effects on the ecosystem (Bergmann et al., 2009; da
Costa et al., 2016). For example, bioconcentration or a loss in pri-
mary photosynthetic production by green algae may affect organ-
isms higher up in the food chain (von Moos and Slaveykova, 2014;
Khan and Arif, 2012; EFSA, 2016).

For chemicals that occur as nano- and micron-sized particles
there are limited toxicological models available. Specifically, there
is a lack of models for polymeric particles in the aquatic environ-
ment, with most of the models available developed for humans
(Jagiello et al., 2016). Current modelling platforms like EPI Suite and
ECOSAR (US EPA, 2012) include models predicting effects for algae,
daphnia and fish for polymeric materials but have several impor-
tant limitations. Datasets from which such models are derived are
limited in size (and sometimes not publically available). Models are
developed for specific polymer classes, i.e. cationics and anionics
only, and can often give categorical classifications only (e.g. ’toxic’
versus ‘non-toxic’) instead of quantitative estimations (US EPA,
2013). Due to these limitations, often no prediction is possible for
a newly synthesized polymer since it does not conform the pre-
determined applicability domain or required input metric. For
example, the only quantitative structure-activity relationship
(QSAR) for algae toxicity available was developed by Boethling and
Nabholz (Boethling and Nabholz, 1996), who found that the amine
to polymer weight percentage (%A-N) correlated with green algae
chronic toxicity. However, the equation did not apply above a
certain threshold (%A-N > 3.5) for which chronic toxicity was found
constant. Moreover, no statistical parameters were provided. For
other polymer classes like non-ionics and anionics there exists
much variance in algal toxicity data (Dĕdkova et al., 2014; van
Hoecke et al., 2013; Boethling and Nabholz, 1996) and because
there still exists uncertainty on the mechanisms by which they
exert effect, it has not been possible to capture the variance into a
model.

In theory, polymeric particles can exert toxicity in various ways.
Polymeric materials >20 nm are unlikely to pass the cell wall of
algae, but larger sized polymer particles can disrupt the cell wall,
and cause photosynthesis inhibition (Navarro et al., 2008;
Boethling and Nabholz, 1996; Bhattacharya et al., 2010). This is
especially relevant in the case of cationic polymers since they
electrostatically adsorb to cell walls and are subsequently able to
react as nucleophiles in displacement reactions with various elec-
trophilic moieties. In comparison, neutral and anionic polymers are
usually less toxic and subtle effects could be explained by indirect

shading (i.e. photosynthesis inhibition) or nutrient depletion
through chelation (Nolte et al., 2016, Bhattacharya et al., 2010). For
anionic polymers, chelation of cationic nutrients can be determined
by measuring e.g. stability constants or complexation capacity
(Wilson and Nicholson, 1993; Amjad, 2007), which are both highly
dependent on chemical functionality. Since these potential modes
of toxicity are driven for a large part by surface chemistry of the
polymers, rather than surface area (Depan, 2016), we hypothesized
that algae toxicity may be largely independent of particle size or
underlying non-polymeric material. Therefore, in this study the aim
was to develop mechanistically interpretable QSAR models for
growth inhibition of green algae by a heterogeneous set of poly-
meric materials and polymeric coatings. Because the mode of ac-
tion for anionic polymers is relatively uncertain, we also
investigated the potential involvement of micro-nutrient depletion
from the testing media. This was done by studying the conforma-
tional behaviour of anionic polymers in response to Mg2þ and Ca2þ

ions using molecular dynamics. Subsequently, the information was
used to explain some of the variance in the growth inhibition data.

2. Methods

2.1. Toxicity data

Data was collected from public literature using Google Scholar
and Web of Science. Toxicity data were mostly 72-h growth inhi-
bition EC50 values for freshwater green algae. However, since data
was limited, marine algae species, 96-h growth-, and photosyn-
thesis inhibition data were included as well. If both 96-h and 72-h
EC50 data were available, the latter was used. Units were stan-
dardized to g/L and transformed logarithmically. No distinctionwas
made between polymers of different sizes since this was not within
our aim. The final data set contained algal toxicity data both for
particles coated with polymers and pure polymer particles. If
available, selection of compoundswas limited to experiments using
the actual exposure concentration (i.e. the suspended polymer)
instead of the nominal concentration, thereby excluding highly
hydrophobic polymers. Most growth inhibition tests were per-
formed using OECD201 guidelines (OECD, 2011; van Hoecke et al.,
2013; ECHA, 2012). For further details on the dataset see SI.

2.2. QSAR development

Custom 1D and 2D molecular descriptors were generated with
RDKit using smiles input (RDKit, 2016). Polymer structures were
drawn using Chemsketch (ACD/ChemSketch, 2013) and appro-
priate physiological (pH~7.4) charges attributed to each functional
group. Unless mentioned otherwise, for each polymer eight
repeating units were drawn and hydroxyl groups were added as
termini, assuming radical polymerisation in aqueous media. In case
of esterification and condensation, carboxylates and carbonyls
were included as termini, respectively. Boethling and Nabholz
(Boethling and Nabholz, 1996) did not provide structural repre-
sentations of their polymers. Therefore, we estimated structural
elements based on their detailed textual description (see SI). All the
topological descriptors calculated were normalized using molecu-
lar weight. Correlation-based feature selection was used to extract
relevant features from the pool of molecular descriptors. Subse-
quent feature selection was performed for the three distinct data-
sets separated based on the charge of the polymer. Charge carrying
groups were amine and amidine (cationic), and carboxylic and
sulfonic acid (anionic) groups. Pearson's correlation (R2) co-
efficients, root mean square errors (RMSE) and p-values (at
CI ¼ 0.05) were determined using standard Python and Microsoft
Excel statistical analysis packages (Anaconda, 2016).
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