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A B S T R A C T

The binding of organic chemicals to serum albumin can significantly reduce their unbound concentration in
blood and affect their biological reactions. In this study, we developed a new QSAR model for bovine serum
albumin (BSA) – water partition coefficients (KBSA/W) of neutral organic chemicals with large structural variance,
logKBSA/W values covering 3.5 orders of magnitude (1.19–4.76). All chemical geometries were optimized by
semi-empirical PM6 algorithm. Several quantum chemical parameters that reflect various intermolecular
interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates the regression
model derived from logKow, the most positive net atomic charges on an atom, Connolly solvent excluded volume,
polarizability, and Abraham acidity could explain the partitioning mechanism of organic chemicals between BSA
and water. The simulated external validation and cross validation verifies the developed model has good
statistical robustness and predictive ability, thus can be used to estimate the logKBSA/W values for chemicals in
application domain, accordingly to provide basic data for the toxicity assessment of the chemicals.

1. Introduction

When exogenous organic chemicals enter into the organisms, the
partitioning in tissues and organs significantly affects their bioaccumu-
lation, toxicodynamics and toxicity. It was generally believed that the
liposome component play an important role in the adsorption and
absorption of organic pollutants in living organism (Arnot and Gobas,
2004; Czub and McLachlan, 2004). However, more and more studies
have identified the contribution of protein to the enrichment of organic
chemicals must not be ignored (DeBruyn and Gobas, 2007; Endo and
Goss, 2011; Endo et al., 2012; Kelly et al., 2007). The chemicals can
bind to serum constituents, especially serum albumin, which is the most
abundant carrier protein in the blood serum, accordingly reduce the
unbound (or freely available) concentration in blood and affect the cell
uptake, metabolic reactions and other biological processes (Armitage
et al., 2014; Endo et al., 2013; Groothuis et al., 2015; Madureira et al.,
2014). Furthermore, the serum albumin is usually taken as a model
protein to investigate the interactions of organic chemicals with protein
because of the abundance of binding constant and the necessity of drug
development (Bischel et al., 2010; Ghuman et al., 2005; Vandenbelt
et al., 1972).

The bovine serum albumin (BSA) is widely used to study the binding
affinity of organic chemicals to serum albumin (Bischel et al., 2010;
Zhang et al., 2016), and the equilibrium partitioning is characterized by

BSA-water partition coefficients (KBSA/W), which is defined as:

K C C= /BSA W BSA water/ (1)

where CBSA and Cwater are the equilibrium concentration of chemicals at
certain temperature in BSA and water, respectively. The KBSA/W values
of some volatile organic compounds such as alkylbenzens, polycyclic
aromatic hydrocarbons (PAHs), and aliphatic alcohols has been deter-
mined by solid phase microextraction (Cross et al., 2003; Kramer et al.,
2007; van Eijkeren et al., 2004; Yuan et al., 1999). Endo and Goss
reported logKBSA/W values for 83 neutral organic chemicals, so far the
largest structurally diverse dataset that were measured by the same
research group (Endo and Goss, 2011).

As is well known, the experimental determination of logKBSA/W is
subject to time cost and high-purity of standards, and there is an urgent
need to understand the molecular structure properties that govern the
partition behavior of chemicals between BSA and water. All of this
promotes the theoretical study of logKBSA/W. Hansch et al. found that
the logKBSA/W of some small apolar chemicals strongly correlated with
their octanol-water partition coefficients (logKow) (Jahnke et al., 2008;
Mayer et al., 2009), similarly to the distribution of chemicals in lipid
phase (Helmer et al., 1968; Vandenbelt et al., 1972), and pointed out
that non-specific intermolecular forces dominated the binding of
neutral chemicals to BSA. However, Endo et al. revealed that the linear
correlation between logKBSA/W and logKow became less significant when
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the molecular structure diversity enlarged, and a break point arose at
logKow=4–5, the slope thereafter became gentler (Endo and Goss,
2011). At the same time, they declared that the polyparameter linear
free energy relationships (pp-LFER) (Abraham et al., 2001; Goss, 2005),
which are capable of describing accurately the non-specific intermole-
cular interactions cannot satisfactorily fit logKBSA/W, so they also
suggested that new model that fully capture the interactions between
the chemicals and BSA is needed to improve the regression accuracy.

To date, quantitative structure-activity relationships (QSARs) that
correlate the molecular structure descriptors and chemical properties
have been widely used in predicting the toxicity and metabolism of
organic chemicals (Cherkasov et al., 2014). The QSAR models also can
help us to understand the toxicity mechanism through the physico-
chemical information carried by the molecular descriptors. In 2007,
OECD promulgated a guidance document for developing, validating
and defining application domain of QSAR models for regulatory
purpose (OECD, 2007). The present QSAR models for logKBSA/W either
have no satisfied statistics or do not fully comply with the OECD
guidance. Accordingly, the purpose of this study is (1) to develop a new
QSAR model for predicting logKBSA/W values of neutral organic
chemicals by quantum chemical computation according to OECD
guidance; (2) to identify the physicochemical characteristics that
dominate the binding affinity of chemicals to BSA.

2. Materials and methods

2.1. Experimental logKBSA/W values and chemical structures

The logKBSA/W values for 83 neutral organic chemicals were taken
from the reference (Endo and Goss, 2011). All of the values were
measured by headspace sampling (volatile compounds) or fiber extrac-
tion method (not volatile compounds) coupled with GC/MS at 37 °C.
The chemicals in the data set include alkanes, alkenes, alkyl halides,
alcohols, phenols, ethers, ketones, amines, anilines, nitro compounds,
polycyclic hydrocarbons, heterocyclic compounds, benzene derivatives,
and the logKBSA/W values vary from 1.19 (4-ethyl-3-hexanol) to 4.76
(pyrene), covering 3.6 orders of magnitude. All data is summarized in
Table 1.

2.2. Molecular descriptors

Intermolecular interactions, such as dispersion interactions, dipole-
dipole interactions, dipole-induced dipole interactions, electrostatic
interactions and hydrogen bonding may dominate the partitioning of
organic chemicals in BSA and water, so we selected average molecular
polarizability (α, a.u.) and dipole moment (μ, a.u.) to characterize van
der Waals forces, and choose Abraham parameters A and B to quantify
the hydrogen bond donor and acceptor strength, respectively. As BSA
contains a lot of amino-acid residues (the isoelectronic point is 4.7), it
may form positive or negative charges at the physiologic pH values and
then polarize nearby molecules and induce favorable dipoles. Such
charge-induced dipole interactions were quantitatively expressed by
the most negative net atomic charges on an atom (q–, a.c.u.) and the
most positive net atomic charges on an atom (q+, a.c.u.). Furthermore,
the cavities should be formed for the partitioning of organic molecules
in the solvent, so Connolly solvent excluded volume (CSEV, Å3) was
selected to reflect the molecular size. The hydrophobicity also plays an
important role in the solvation of chemicals in organic phase, and
logKow was chosen.

All of the molecules were optimized by semi-empirical PM6
methodology, which was implemented by MOPAC (2012), to calculate
α, μ, q– and q+. CSEV was quantified by CS Chem3D Ultra in
ChemOffice 2010 (Cambridge, UK). Abraham parameters A and B were
collected from the reference (Endo and Goss, 2011). The logKow values
were obtained from EPI Suite 4.11 (EPA, 2011) and all of them are
experimental measurement for the purpose of model accuracy. Thus,

the chemicals have no experimental logKow values were removed and
finally the dataset contains 74 chemicals.

2.3. Model calibration and validation

The multilinear regression (MLR) is employed to filter the descrip-
tors and develop predictive logKBSA/W model, which is carried out by
SPSS 17.0. The squared correlation coefficient r2 was used to quantify
the calibration performance:
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y y
2 ∑ ( − )

∑ ( − )
i
n

i i

i
n

i

=1
fit obs 2

=1
obs mean 2 (2)

where yi
fit, yi

obs and ymean denote the regression-fitted, observed, and
observed mean values (in our case: logKBSA/W), respectively, and n is
the number of data points. The predictive performance was evaluated
by q2 (Schüürmann et al., 2008):

q = 1 − y y

y y
2 ∑ ( − )

∑ ( − )
i
n

i i

i
n

i

=1
pred obs 2

=1
obs mean 2 (3)

In Eq. (3), yi
fit is replaced by yi

pred, the predictive logKBSA/W value by
the fitting model. Differently from r2 value that varies between 0 and 1,
q2 ranges from –∞ to 1 (perfect agreement) and q2=0 represents the
case that the predictive performance is as good as taking the average
logKBSA/W value as the predicted value for all compounds. In addition,
root mean square error (rms), mean error (me), maximum negative
error (mne, the largest underestimation), and maximum positive error
(mpe, the largest overestimation), were also calculated to assess the
statistical performance of the developed model.

The multicollinearity among the selected molecular descriptors was
diagnosed by a variable inflation factor (VIF). If VIF varies from 1.0 to
5.0, the regression model is suitable without the existence of collinear-
ity; if VIF is larger than 10.0, the correlation coefficients of variables
must be rechecked.

The statistical robustness and predictive ability of regression model
were evaluated by simulated external validation and cross validation. In
simulated external validation, the whole dataset was randomly divided
into training set that contains 70% compounds and the test set for the
left 30% compounds. For the feasibility of validation, both subsets
should cover the descriptor space and the logKBSA/W range of the whole
data set. Then a new model was re-calibrated for the training set using
the descriptors selected in the original model, and then used to predict
the logKBSA/W values for the test set. The parameters r2, q2 and rms were
calculated to characterize the predictive capacity.

2.4. Influential compounds and outliers

The compounds that own extremely large or small molecular
descriptors can significantly affect the model regression. Such chemi-
cals are diagnosed by Hat (hi) value, which is calculated as:

h x X X x= ( )i i i
T T –1 (4)

where X is a descriptor matrix in which the rows and columns represent
the compounds and their descriptors, respectively, XT is the transposi-
tion of X, (XTX)–1 is the inverse of matrix XTX, and xi is the descriptor
row-vector of the query compound. The warning value for hi is h*=3p/
n, where n and p is the number of chemicals and descriptors,
respectively (Chatterjee and Hadi, 1986). Thus the chemicals with hi
higher than h* are identified as influential compounds, but not
necessarily outliers, which are determined by the absolute standard
deviation larger than 3. The outliers should be removed from the
application domain to improve the predictive reliability. In this study,
the influential compounds and outliers are visualized by a Williams plot
of standardized prediction residuals (SR) versus leverage hi.
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