ARTICLE IN PRESS

Environment International xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Review article

From the exposome to mechanistic understanding of chemical-induced adverse effects

Beate I. Escher ^{a,*,1}, Jörg Hackermüller ^{a,1}, Tobias Polte ^{a,1}, Stefan Scholz ^{a,1}, Achim Aigner ^b, Rolf Altenburger ^a, Alexander Böhme ^a, Stephanie K. Bopp ^c, Werner Brack ^a, Wibke Busch ^a, Marc Chadeau-Hyam ^d, Adrian Covaci ^e, Adolf Eisenträger ^f, James J. Galligan ^g, Natalia Garcia-Reyero ^{h,i}, Thomas Hartung ^{j,k}, Michaela Hein ^a, Gunda Herberth ^a, Annika Jahnke ^a, Jos Kleinjans ¹, Nils Klüver ^a, Martin Krauss ^a, Marja Lamoree ^m, Irina Lehmann ^a, Till Luckenbach ^a, Gary W. Miller ⁿ, Andrea Müller ^a, David H. Phillips ^o, Thorsten Reemtsma ^a, Ulrike Rolle-Kampczyk ^a, Gerrit Schüürmann ^{a,p}, Benno Schwikowski ^q, Yu-Mei Tan ^r, Saskia Trump ^a, Susanne Walter-Rohde ^f, John F. Wambaugh ^s

- ^a Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- b Leipzig University, Rudolf Boehm Institute for Pharmacology & Toxicology, Clinical Pharmacology, Haertelstr. 16-18, 04107 Leipzig, Germany
- ^c European Commission Joint Research Centre, Directorate F Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
- d University London, Imperial College, Department Epidemiology & Biostatistics, School of Public Health, St Marys Campus, Norfolk Place, London W2 1PG, England, United Kingdom
- ^e Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
- ^f German Environment Agency UBA, Dessau-Roßlau, Germany
- g Vanderbilt University, School of Medicine, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department Biochemistry, Nashville, TN 37232, USA
- ^h US Army Engineer Research & Development Center, Vicksburg, MS, USA
- i Mississippi State University, Starkville, MS, USA
- ^j Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
- k University of Konstanz, Germany
- ¹ Maastricht University, Department Toxicogenomics, 6200 MD Maastricht, The Netherlands
- m Vrije Universiteit, Faculty of Earth & Life Sciences, Institute for Environmental Studies, 1081 HV Amsterdam, The Netherlands
- ⁿ Dept of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- ° King's College London, MRC-PHE Centre for Environment & Health, Analytical & Environmental Sciences Division, London SE1 9NH, England, United Kingdom
- ^p Technical University Bergakademie Freiberg, Institute for Organic Chemistry, 09596 Freiberg, Germany
- ^q Institute Pasteur, Systems Biology Laboratory, Paris, France
- ^r US EPA, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
- ^s US EPA, National Center for Computational Toxicology, Research Triangle Park, NC 27711, USA

ARTICLE INFO

Article history: Received 10 August 2016 Received in revised form 27 October 2016 Accepted 29 November 2016 Available online xxxx

Keywords: Exposome AOP Systems toxicology Systems biology Systems chemistry Risk assessment

ABSTRACT

The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: AEP, Aggregate exposure pathway; AO, Adverse outcome; AOP, adverse outcome pathway; EWAS, exposome-wide association studies; KE, key event; HTS, high throughput screening; MIE, molecular initiating event; TD, toxicodynamic; TK, toxicokinetic.

- * Corresponding author at: Department Cell Toxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany. E-mail address: beate.escher@ufz.de (B.I. Escher).
- ¹ These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.envint.2016.11.029

0160-4120/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Escher, B.I., et al., From the exposome to mechanistic understanding of chemical-induced adverse effects, Environ Int (2016), http://dx.doi.org/10.1016/j.envint.2016.11.029

ARTICLE IN PRESS

Contents

B.I. Escher et al. / Environment International xxx (2016) xxx-xxx

Ι.	Introd	ICTION
	1.1.	Defining relevant exposure
		1.1.1 Exposome
		1.1.2. Eco-exposome
	1.2.	Application of the AOP concept in the context of exposome research.
		1.2.1. How could the exposome approach and the AOP concept cross-fertilize each other?
		1.2.2. Aggregate exposure pathways (AEPs), AOPs, and the exposome
		1.2.3. Putative AOPs in exposome assessment
		1.2.4. Grouping of exposures with converging AOPs
		1.2.5. Quantitative versus qualitative AOPs
		1.2.6. Networks of AOPs for mixtures
	1.3.	The role of systems biology and chemistry in exposome and AOP research
		1.3.1. What to measure?
		1.3.2. Where to measure?
		1.3.3. When to measure?
		1.3.4. From exposome to adverse outcomes
		1.3.5. Systems biology challenges in exposome research
2.	Conclu	sions
	2.1.	How the AOP concept enhances understanding the exposome and its impact on adverse outcome
	2.2.	Mixtures
	2.3.	Exposome characterization as a driver for risk assessment
Ackn	owledg	ements
Refe	ences.	

1. Introduction

The exposome expands our perception of lifetime exposure because it integrates exogenous chemicals with genetic and external factors that generate chemicals inside the body and thereby may pose threats to human health (Miller and Jones, 2014; Rappaport and Smith, 2010; Wild, 2012). The external contribution to the human exposome is determined by environmental exposure, also termed the eco-exposome (Lioy and Smith, 2013), such as exposure via air, food, water, dust, and use of consumer products (Fig. 1). Apart from environmental pollutants and their biotransformation products, the exposome includes endogenous metabolites and markers of the adaptive cellular stress responses, as well as chemicals that are generated in response to psychosocial stress and lifestyle factors. These joint exposures can be related to adverse health effects via exposome-wide association studies (EWAS;

Rappaport, 2012) without attempting to identify mechanistic causes (Fig. 1). Importantly, these associations capture the joint effect of many stressors acting in concert, which invokes mixture effects not only in chemical space of exogenous and endogenous compounds, but also mixtures in time, including the time dependence of effects. The exposome has thus been advocated as a key to cumulative risk assessment (Smith et al., 2015).

During the last decade, the exposome approach has mainly been considered in epidemiology, while the complementary concept of Adverse Outcome Pathways (AOP) has emerged in (eco)toxicology (Ankley et al., 2010). The AOP concept links the exposure of chemicals to their cellular concentrations and molecular initiating events (MIE), through network/pathway disturbances and key events (KE) to responses at the cellular, organ, organism and, finally, population and ecosystem levels (Fig. 1). The AOP concept aims to enhance the utility of

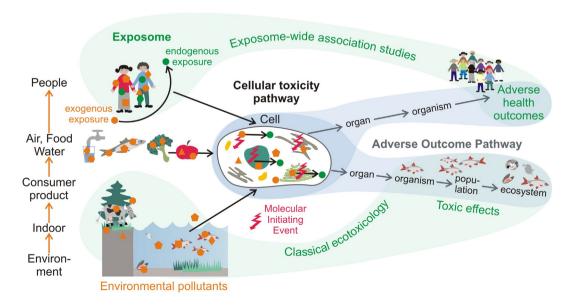


Fig. 1. Multiple chemical exposures of the environment and their link via environmental media and the food chain to human exposure. Any type of exogenous chemical exposure will change the endogenous exposure, both of which will elicit effects on cellular toxicity pathways. The cellular level might serve as integrator to understand both, the pathways to adverse health outcomes as well as to ecosystem-level effects.

Please cite this article as: Escher, B.I., et al., From the exposome to mechanistic understanding of chemical-induced adverse effects, Environ Int (2016), http://dx.doi.org/10.1016/j.envint.2016.11.029

Download English Version:

https://daneshyari.com/en/article/5748400

Download Persian Version:

https://daneshyari.com/article/5748400

Daneshyari.com