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H I G H L I G H T S

• A key challenge is to understand
and predict catchment-scale faecal
contamination.

• We employ long-term E. coli data and
novel use of spatial-stream-network
models.

• Concentrations of E. coli not clearly asso-
ciated with flow conditions or season

• A significant predictor of spatial pat-
terns was an Anthropogenic Impact
Index.

• Spatial-stream-network models helped
predict potential “hot spots” of
contamination.
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An11 year dataset of concentrations of E. coli at 10 spatially-distributed sites in amixed land-use catchment inNE
Scotland (52 km2) revealed that concentrations were not clearly associated with flow or season. The lack of a
clear flow-concentration relationship may have been due to greater water fluxes from less-contaminated head-
waters during high flows diluting downstream concentrations, the importance of persistent point sources of
E. coli both anthropogenic and agricultural, and possibly the temporal resolution of the dataset. Point sources
and year-round grazing of livestock probably obscured clear seasonality in concentrations.Multiple linear regres-
sion models identified potential for contamination by anthropogenic point sources as a significant predictor of
long-term spatial patterns of low, average and high concentrations of E. coli. Neither arable nor pasture land
was significant, evenwhen accounting for hydrological connectivitywith a topographic-indexmethod. However,
this may have reflected coarse-scale land-cover data inadequately representing “point sources” of agricultural
contamination (e.g. direct defecation of livestock into the stream) and temporal changes in availability of
E. coli from diffuse sources. Spatial-stream-network models (SSNMs) were applied in a novel context, and had
value inmakingmore robust catchment-scale predictions of concentrations of E. coliwith estimates of uncertain-
ty, and in enabling identification of potential “hot spots” of faecal contamination. Successfully managing faecal
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contamination of surface waters is vital for safeguarding public health. Our finding that concentrations of E. coli
could not clearly be associated with flow or season may suggest that management strategies should not neces-
sarily target only high flow events or summer when faecal contamination risk is often assumed to be greatest.
Furthermore, we identified SSNMs as valuable tools for identifying possible “hot spots” of contamination
which could be targeted formanagement, and for highlighting areaswhere additionalmonitoring could help bet-
ter constrain predictions relating to faecal contamination.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

When faecal material is transferred to surfacewaters, the delivery of
faecal pathogens including Escherichia coli O157, Campylobacter and
Cryptosporidium parvum may also occur (Oliver et al., 2005a). Such
pathogens can lead to gastrointestinal illness in humans if exposure to
contaminated water occurs through, for example, recreational uses of
water or consumption of drinking water from poorly-treated private
supplies (Fewtrell and Kay, 2015; Strachan et al., 2006). In the European
context, legislation such as the Drinking Water Directive (Council
Directive 98/83/EC) and revised Bathing Water Directive (Council
Directive 2006/7/EC) stipulate acceptable concentrations of faecal indi-
cator organisms (FIOs), used as a proxy for faecal contamination, that
should be compliedwith for different uses ofwater in order to safeguard
public health. Such legislation has prompted increased recognition of
the need to better understand the dynamics and drivers of faecal con-
tamination in surface waters, so that effective management strategies
can be devised that permit microbiological water quality standards to
be met (Kay et al., 2008a).

In rural areas, the potential for faecal contamination is often high
due to potential for contributions from both point and diffuse sources.
Sewage infrastructure is often more rudimentary in such areas, with
septic tanks and combined sewer overflow waste water treatment
works (WWTWs) being common, both of which represent important
point sources of contamination (Kay et al., 2008b). Meanwhile, spread
manure and faeces from grazing animals arising from intensive agricul-
ture are examples of diffuse sources (Chadwick et al., 2008). The high
potential for faecal contamination in rural areas can impact on a number
of downstream water uses which, in turn, has implications for meeting
legislative requirements and for public health. For example, exports of
faecal contaminants from rural catchments have been suggested to ac-
count for large proportions of contamination observed in coastal bath-
ing waters (Crowther et al., 2003). Furthermore, private water
supplies are commonly relied upon to provide drinking water in rural
areas, some of which may be drawn from surface waters. However,
such supplies often employ only limited treatment mechanisms, mean-
ing there is increased potential for human infection by faecal pathogens
when the microbiological quality of the rawwater of a private supply is
poor (Kay et al., 2007). As such, there is a vital need to better manage
faecal contamination in rurally-influenced catchments.

Comparedwith other types ofwater pollution, the evidence-base for
understanding the behaviour and survival of faecal pathogens and FIOs
in the environment has, historically, been more limited (Kay et al.,
2008a). Significant knowledge gaps still persist in relation to under-
standing the spatio-temporal dynamics of faecal contamination, espe-
cially at the catchment scale where decisions regarding management
of water quality need to be made (Oliver et al., 2016). In particular, un-
derstanding the response of concentrations of FIOs to hydrological con-
ditions and season using datasets long enough to capture sufficient
hydroclimatic variation, and developing models that can be used to
infer potential sources of contamination from spatial patterns of FIOs
and make robust predictions for unmeasured locations represent key
challenges at this scale (Kay et al., 2010; Tetzlaff et al., 2012; Vitro et
al., 2017).

Previous catchment-scale studies (e.g. Crowther et al., 2002, 2003;
Kay et al., 2005, 2008b; McGrane et al., 2014; Tetzlaff et al., 2012)

have offered important insights into the dynamics and controls of faecal
contamination. In particular, high flow events and summer have often
been identified as periods when concentrations of FIOs are likely to be
elevated. In addition, multiple linear regression models (MLRMs)
linking spatial patterns in concentrations to readily-available land-
cover variables as proxies for different sources of contamination have
generally identified intensive livestock farming and human sewage in-
puts as potentially important sources. Where more detailed datasets
have been available, some studies have further identified physical,
chemical and biological factors that can be significantly associated
with spatial patterns of FIOs. For example, Dwivedi et al. (2013) found
temperature, dissolved oxygen, phosphate, ammonia, suspended solids
and chlorophyll to be important for estimating E. coli loads in Plum
Creek, Texas. However, many past studies have generally been
constrained by the availability of only short-duration (b1–2 year)
datasets relating to concentrations of FIOs. Furthermore,many of the re-
gression models based on land cover for FIOs are fairly simple in their
implementation (Kay et al., 2010). For example, elevated concentrations
of FIOs during high flow conditions are often attributed to increased hy-
drological connectivity between sources of contamination and the
stream network, particularly via overland flow (Dwivedi et al., 2016;
Kay et al., 2008b; Tyrrel and Quinton, 2003). However, conceptualisa-
tion of the connectivity potential of certain land covers within regres-
sion models is rare (an exception is Crowther et al., 2003, who
showed that concentrations of FIOs during low flows were most influ-
enced by land use within 1–2 km surface-flow distance of a sub-catch-
ment outlet, whilst during high flows land use across the whole of a
sub-catchmentwas important). Also rare is the recognition that concen-
trations of FIOs at flow-connected sampling sites along a stream net-
work may not be independent of one another (although Vitro et al.,
2017 successfully account for this with a spatial regression model).
This may give rise to spatial autocorrelation between sampling sites,
which, if not accounted for, may lead to significance being incorrectly
assigned to the land-cover variables of the models (Isaak et al., 2014).

Whilst dataset length may be logistically constrained, representing
hydrological connectivity inmodels is a possibility. A potential approach
is the use of topographically-based indices, such as the Network Index
(Lane et al., 2004). This is an extension of the topographic wetness
index of Beven and Kirkby (1979) and accounts for the requirement
that for a saturated area to be hydrologically connected to a stream via
anoverlandflowpath, the entireflowpathmust be saturated to prevent
disconnection by processes such as re-infiltration (Lane et al., 2004,
2009). However, whilst this metric has potential in characterising the
hydrological connectivity likelihood of diffuse sources of pollution, it
has rarely been implemented in this context (Lane et al., 2009; an ex-
ception being SCIMAP outlined by Reaney et al., 2011).

Spatial-stream-network models (SSNMs) represent an advance-
ment in geostatistical methods that mean it is also now possible to ac-
count for spatial autocorrelation between observations along stream
networks (see Ver Hoef and Peterson, 2010 and Ver Hoef et al., 2006
for full details). Central to SSNMs is that, unlike traditional geostatistical
methods, autocorrelation between observed locations is based on
stream distance as opposed to Euclidian distance. Stream distance is
the shortest distance between two points when following the stream
network. Autocovariance functions based on stream distance are
based on moving average constructions, and may be defined for sites
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