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H I G H L I G H T S

• US corn yield variability has changed
significantly with distinct spatial pat-
tern.

• Corn yield variability increased in
roughly one third of growing counties.

• Current state-of-art crop models partly
reproduced the observed change pat-
tern.

• Climate variability contributes the most
to the changes in statistical model.

• Irrigation influences the magnitude and
even the change sign of yield variability.

G R A P H I C A L A B S T R A C T

Change trends of corn yield variability (%/yr) based on observations and simulations by statistical model and 11
AgMIP gridded cropmodels for thewhole country as awhole. 15-year timewindowduring 1980–2010 is used to
calculate the interannual variability, based onwhich the linear trend is fitted and normalized by themean yields.
*indicates the significant trend at the 95% level.
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The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability
through a reduction in the year-to-year variability of US corn yieldwould greatly benefit global food security. Impor-
tant in this regard is to understand how corn yield variability has evolved geographically in the history and how it
relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has de-
creased significantly during 1980–2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite
the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas
and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability.
The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing
increasing variability andunderestimating themagnitude of decreasing variability. And3 out of 11models evenpro-
duced a differing sign of change from observations. Hence, statistical model which produces closer agreement with
observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variabil-
ity. It is found that climate variability dominate the change trends of corn yield variability in theMidwest Corn Belt,
while the ability of climate variability in controlling yield variability is low in southeastern andwestern arid regions.
Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska)where separate estimates of irrigat-
ed and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in
corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its
influencing factors at the county scale. I also caution the use of process-based cropmodels, which have substantially
underestimated the change trend of corn yield variability, in projecting its future changes.
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1. Introduction

With increases in population, global food demand is expected to
roughly double by 2050s (Godfray et al., 2010; Tilman et al., 2011).
TheUnited States is responsible for ~35% and ~60%of global corn supply
and exports (USDA–NASS, 2016; USDA-ERS, 2017). Enhanced supply
stability through a reduction in the year-to-year variability of US corn
yield would greatly benefit the global food system. In fact, recent food
crises highlighted the need for better understanding of the year-to-
year variability of agricultural productions (Schmidhuber and Tubiello,
2007). Therefore, analyses of historical variations of U.S. corn yield can
provide much needed insight into future food security and adaptation
measures. Previous global and regional scale studies showed that crop
yield variability has changed in the past (Hazell, 1984; Naylor et al.,
1997; Calderini and Slafer, 1998; Reilly et al., 2003; Kucharik and
Ramankutty, 2005; Osborne and Wheeler, 2013; Iizumi and
Ramankutty, 2016). However, finer-scale analysis on the spatial pattern
of changes in crop yield variability across the whole country is rare, de-
spite the fact that the level of temporal variability depend largely on the
spatial scale at which it is considered.

Variation in crop yield fromone year to the next is caused by, among
others, fluctuations in weather, pest diseases, agriculturalmanagement,
technology and etc. (Asseng et al., 2013; Hawkins et al., 2013; Challinor
et al., 2014; Zhao et al., 2016; Leng and Huang 2017; Leng, 2017;
Schauberger et al., 2017). Predicting the response of crops to environ-
mental changes has to rely on models that translate changes in climatic
and non-climatic conditions to changes in agricultural outcomes. There
are generally two common approaches to assess these impacts: process-
based simulation models representing key dynamic processes affecting
crop yields (Deryng et al., 2011; Rosenzweig et al., 2013; Leng et al.,
2016b) and statistical models estimating functional relationships be-
tween historical observations of weather and yields (Lobell and Burke,
2010; Leng et al., 2016a). Based on the two approaches, an increasing
number of studies have examined the impact of climate variability on
crop yield (Ray et al., 2002; Rosenzweig et al., 2002; Lobell and Asner,
2003; Schlenker and Roberts, 2009; You et al., 2009; Sakurai et al.,
2014; Leng et al., 2016a; Lesk et al., 2016; Leng and Huang 2017; Leng,
2017). Whilst these studies acknowledged the importance of climate
variability in influencing yield variability, the contribution of climate
variability to the temporal evolution of crop yield variability is unclear
at fine scales.

Recently, the process-based modeling community has completed
severalmodel intercomparison studieswithin the framework of the Ag-
ricultural Model Intercomparison and Improvement Project (AgMIP)
(Rosenzweig et al., 2013). However, to what extent, these process-
based simulation models capture the observed changes in crop yield
variability is unclear. Indeed, knowledge of how current state-of-art
crop models perform in simulating historical yield variability changes
has great implication for future projection of corn yield variability
using process-based cropmodels. In this study, I investigate the tempo-
ral evolution of year-to-year variability of corn yield at the county scale
across US. Specifically, I will address the following three scientific ques-
tions: 1) How corn yield variability have changed during the past three
decades? and 2) How process-based and statistical crop models per-
form in simulating the changes in corn yield variability? Such a valida-
tion is important for justifying the selection of process-based or
statistical model for addressing the third question: How much climatic
and non-climatic factors have contributed to the changes in corn yield
variability for each growing county?

2. Materials and methods

County-level corn yield for 1981–2010 are obtained from the Na-
tional Agriculture Statistics Survey's Quick Stats database by the US De-
partment of Agriculture (USDA) (http://www.nass.usda.gov/Quick_
Stats). Separate estimates of irrigated and rainfed corn yield are also

collected from the USDA database, which only exist for a limited num-
ber of counties mainly located in central Great Plains. The interannual
variability of corn yield is estimated by the standard deviation of annual
corn yield anomalieswith linear trend removed. 15 year timewindow is
used during 1980–2010 and 17 samples of variability are derived, based
on which the change trend of yield variability is calculated. The statisti-
cal significance of change trend is estimated according to the two-tailed
Student's t-test. The 15-year time window is selected given the data
length and sample size requirement for robust statistics. Analysis is re-
peated using smaller and larger time windows to examine the sensitiv-
ity of the results to the choice of time window.

The climate data for 1981–2010 is obtained from the AgMERRA cli-
mate data set, which is developed specifically for agricultural impact as-
sessments (Ruane et al., 2015). To quantify climate variability impacts
on corn yield variability must rely on models that translate changes in
climate to changes in agricultural outcomes. There are generally two
common approaches to assess these impacts, i.e. process-based simula-
tion models and statistical models (Lobell and Asseng, 2017). As for the
statistical approach, I fit the multiply regression model with corn yield
variability as the dependent variable and growing season temperature
and precipitation variability as the predictors. Growing season temper-
ature and precipitation is aggregated into county scale with weights
given by the gridded crop area map from MIRCA2000 (Portmann
et al., 2010). I also use simulated corn yields by eleven gridded crop
models (Table 1) from the Agricultural Modelling Intercomparison
and Improvement Project (AgMIP) (Rosenzweig et al., 2013) and
the Inter-Sectoral Impact Model Intercomparison Project (ISI-
MIP)(Warszawski et al., 2014). These crop models were driven by the
same climate data (i.e. AgMERRA climate) as used in the statistical
model. In this study, no certain criterion is adopted for selecting
process-based crop models for analysis. Instead, all available simula-
tions from thosemodels contributing to the AgMIP and ISI-MIP projects
are used.

Based on validation results, several scenarios of climate conditions
are designed as inputs into statistical model in order to investigate the
effects of changes in climate variability on corn yield variability changes
following Lobell and Burke (2010). Specifically, four scenarios of histor-
ical time series of T and P are derived: (i) actual T and actual P variability
time series for each county, (ii) actual T and detrended P variability time
series, (iii) detrended T and actual P time series, and (iv) detrended T
and detrended P time series. The derived time series are fed into the
fitted statistical model and corn yield variability is predicted. Trend in
the difference of predicted corn yield variability between (iv) and
(i) is used to quantify the impact of climate variability, whereas (ii)
and (iii) are used to determine the relative contribution of T and P to
overall impacts, respectively. Climate variability is taken as the domi-
nant factor in regulating yield variability changes when more than

Table 1
Description of crop models used in this study.

Crop model Model type Key literature

CGMS-WOFOST Spatially distributed site-based process
model (based on WOFOST)

(de Wit and Van
Diepen, 2008)

CLM-Crop Global ecosystem model (Drewniak et al.,
2013)

GEPIC Site-based process model (based on
EPIC)

(Williams et al., 1983;
Liu et al., 2007)

LPJ-GUESS Global ecosystem model (Lindeskog et al.,
2013)

LPJmL Global ecosystem model (Waha et al., 2012)
pAPSIM Site-based process model (Keating et al., 2003)
PEGASUS Global ecosystem model (Deryng et al., 2016)
EPIC-IIASA Site-based process model (based on

EPIC)
(Balkovič et al., 2014)

EPIC-Boku Site-based process model (based on
EPIC)

(Kiniry et al., 1995)

ORCHIDEE-crop Global ecosystem model (Wu et al., 2016)
pDSSAT Site-based process model (Jones et al., 2003)
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