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H I G H L I G H T S

• Mapping soil contamination with
known uncertainty improves key man-
agement decisions.

• Soil data and covariates were used in
linear mixed models to predict lead
and zinc distribution.

• Distributions were driven by traffic, soil
landscape, elevation, land use (Zn),
population (Pb).

• Highest proportions of observed lead
concentrations existed in residential
areas.

• Predicted lead exceeded the set guide
value across the catchment whereas
predicted zinc did not.
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The human population is increasing globally and land use is changing to accommodate for this growth. Soils
within urban areas require closer attention as the higher population density increases the chance of human ex-
posure to urban contaminants. One such example of an urban area undergoing an increase in population density
is Sydney, Australia. The city also possesses a notable history of intense industrial activity. By integratingmultiple
soil surveys and covariates into a linearmixedmodel, it was possible to determine themain drivers andmap the
distribution of lead and zinc concentrations within the Sydney estuary catchment. The main drivers as derived
from the model included elevation, distance to main roads, main road type, soil landscape, population density
(lead only) and land use (zinc only). Lead concentrations predicted using the model exceeded the established
guideline value of 300 mg kg−1 over a large portion of the study area with concentrations exceeding
1000 mg kg−1 in the south of the catchment. Predicted zinc did not exceed the established guideline value of
7400 mg kg−1; however concentrations were higher to the south and west of the study area. Unlike many
other studieswe considered the prediction uncertaintywhen assessing the contamination risk. Although the pre-
dictions indicate contamination over a large area, the broadness of the prediction intervals suggests that inmany
of these areas we cannot be sure that the site is contaminated. More samples are required to determine the con-
taminant distribution with greater precision, especially in residential areas where contamination was highest.
Managing sources and addressing areas of elevated lead and zinc concentrations in urban areas has the potential
to reduce the impact of past human activities and improve the urban environment of the future.
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1. Introduction

The human population is rapidly increasing around the world and
majority of people reside within urban areas (United Nations, 2015).
To accommodate for this increase, population density in cities is growing
and outer urban areas are sprawling, often involving land use change
from rural or industrial to urban land and loss of greenspace (Pauleit
et al., 2005). Land use change can disturb the soil profile and alter soil
properties, while resulting in increased areas of hard, impermeable sur-
faces such as asphalt and concrete. Soil disturbance and increased imper-
meable surfacing amplifies water runoff within a hydrological
catchment, increasing the chances of pollution, sedimentation and great-
er turbidity in waterways (Jartun et al., 2008; Shi et al., 2007).

Chances of human exposure to soil contaminants are increasing as
more people either choose, or are forced to reside in areas that have a
history of industrial activity, or near areas of high atmospheric deposi-
tion of contaminants (e. g. near busy roads). Effects of contaminants
vary depending on the type and concentration. If absorbed to large
enough concentrations within a body, the contaminant may be toxic,
resulting in cancer, developmental problems, abnormalities or death
of those affected (Aelion et al., 2008; Laidlaw and Taylor, 2011; UWE,
2013). It is therefore important to plan urban growth and development
in order to decrease risk of human exposure to contaminants and risk of
contaminants entering the natural environment. Many countries, for
example, Canada, Australia and the Netherlands, have legislative re-
quirement that if a site contains contaminants over agreed guideline
values, the site must be managed and remediated (BC MoE, 2014;
NEPM, 1999; VROM, 2000).

Previous studies have investigated contaminant distributionswithin
a city through sampling and interpolation of chemical data (Birch et al.,
2011; Bourennane et al., 2006; Cattle et al., 2002; Lark and Scheib, 2013;
Manta et al., 2002). Most investigations have observed heavy metals as
they are able to remain in the soil for extended periods and so present a
greater risk in urban areas years after the sourcehas ceased (Wang et al.,
2005). Once soil chemical concentrations are quantified, the contami-
nants can be mapped, analysed using spatial statistics and interpolated
to determine areas of elevated concentrations. Current interpolation
methods are effective in reducing the number of samples required,
however due to the cost of site assessment, hazardous nature of labora-
tory analytical methods and large cost of remediation, there is potential
for improvement in the precision of mapping of contaminants, both
site- and city-wide (Horta et al., 2015).

Precision could be improved by integrating spatially dense covari-
ates into the spatial model, forming a linear mixed model (LMM). Co-
variates are potential predictors which may be related to natural
factors, such as soil texture, or anthropogenic factors, such as proximity
to roads and land use. Use of spatially dense covariates allows finer scale
predictions, rather than estimating meanmetal concentration, or inter-
polating over a broader area. Integrating covariates into a model helps
determine drivers of contaminant distribution, which may enable in-
vestigators to improve source management, thus reducing further con-
taminant input and exposure (Lacarce et al., 2012; Maas et al., 2010).

It is also important to understand the uncertainty of the predicted
distributions. Past studies that have assessed contaminant distribution
in cities include those by Lark and Scheib (2013), Birch et al. (2011)
and Manta et al. (2002). These, like many other studies have presented
maps of distribution, which is a point estimate, but have not addressed
uncertainty of these predictions in terms of an interval estimate or pre-
diction interval and the likelihood of exceeding threshold values. It is
critical thatmaps include both a prediction and an associated prediction
interval as it gives end users an understanding of the reliability of the
predictions, whichmay help improvemanagement decisions to address
contamination.With such a high and ever-increasing risk of exposure to
contaminants in urban areas, it is essential to use the most precise and
up-to-datemethods formapping contamination in citieswith high pop-
ulation growth.

Sydney, Australia, similar tomany other cities around theworld, has a
rapidly increasing population and a long history of industrial activity,
resulting in considerable land use change over the past two hundred
years. Colonised by Europeans in 1788, urbanisation and industrialisation
slowly spread along the city'smain arterial river - the Parramatta River. As
time progressed, areas in Sydney that were historically used for industry
were replaced by housing and greenspace for the growing population
(Birch et al., 2015a, 2015b). Awide variety of industries, such as chemical
factories, abattoirs, gas works and munitions have adversely affected
catchment soil and aquatic sediments (Birch et al., 2000; Birch and
Taylor, 1999, 2002; Danis et al., 2014; McCready et al., 2006, 2004;
McLoughlin, 2000).

It is essential for local governments to prevent risk of exposure of
residents to historical soil contaminants. Two ways to aid this include
mapping areas that have potentially elevated heavy metal concentra-
tion and determining the drivers of metal distribution.

With these ideas in mind, the current study aimed to: 1. Combine a
number of datasets that have assessed soil Pb and Zn content in Sydney,
Australia; 2. Develop a spatial prediction model using covariates to in-
vestigate the drivers of Pb and Zn distribution in Sydney; 3. Use this
model to predict Pb and Zn distribution onto a grid, providing both a
point estimate and interval estimate, to identify areas where contami-
nant concentrations exceed guideline values. The information provided
by this studywill provide a starting point for investigation andmanage-
ment of contaminant sources in urban areas.

2. Methods

2.1. Study area

The Sydney estuary catchment (approximately 500 km2), has a
mean population density of 2000 people per square km and a total
population (as of the 2011 census) of 1.42 million people (ABS,
2011). Land uses include residential (50%), greenspace (24%), indus-
trial (7%) and other uses, such as commercial and recreational land
(19%) (NSW Department of Planning and Environment, 2016). Soils
in the catchment are predominantly comprised of Technosols, Pod-
zols, Arenosols, Cambisols and Lixosols (Bannerman and Hazelton,
1990; Chapman and Murphy, 1989; Isbell et al., 1997; IUSS Working
Group WRB, 2015). The region's geology consists of Hawkesbury
Sandstone, alluvial sediments and Wianamatta Group shale and
sandstone, with igneous rocks occurring in a small portion in the
south-west of the study area (Bannerman and Hazelton, 1990;
Chapman and Murphy, 1989).

2.2. Data compilation

2.2.1. Soil data
The soil data were compiled from six surveys (Table 1). Samples

were taken from the topsoil, ranging from 2 to 10 cm in depth, and
chemically analysed by aqua regia digestion using ICP-OES (USEPA
Method 200.8 modified) spectrometry. Quality Assurance and Quality
Control (QA/QC) methods are described in detail in the references for
each of the studies in Table 1. The studies quantified a range of metals,
with Pb and Zn being consistently recorded in all studies, hence this
study will focus on these elements.

Sampling density varied due to differing objectives of each study.
The data used in Birch et al. (2011) covered the entire catchment and
used a coarser semi-grid sampling scheme, whereas the other stud-
ies used more intensive sampling over smaller study areas (Fig. 1).
By combining these spatially varied datasets, small-scale clustering
became evident. Furthermore, the majority of samples were taken
from the southern side of the catchment, resulting in larger-scale
clustering. This clustering, along with variation of point and diffuse
contamination can present as peaks in a variogram model which
may in turn prevent development of a model that is applicable on a
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