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H I G H L I G H T S

• Interpolation ofmodel residuals can im-
prove the accuracy of air pollution
maps.

• The residual map is useful for detecting
regional bias.

• Using a cross-validation process pre-
vents fitting random observation errors.

• Correction should not be applied if the
residuals are randomly distributed in
space.

• Themethodology can accommodate op-
timization of different performance
measures.
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Models that are used tomap air pollutant concentrations are not free of errors. A possible approach for improving
the final concentrationmap is to interpolate the residuals of the initial model concentration estimates. Due to the
possible spatial autocorrelation of the residuals of the initial model estimates, Bayesian inference schemes were
suggested for this task, since they can correctly adjust the level of fitting of the residuals to the randommeasure-
ment errors. However, the complexity of Bayesian methods often discourages their use. Here, we present an al-
ternative and simpler approach, using a leave-one-out cross-validation to determine the optimal level offitting of
the residual correction. We show that the optimal correction level is related to the extent of the spatial autocor-
relation of the cross-validated residuals. Namely, when the residuals are not autocorrelated residual correction is
unnecessary, and if employedmay actually degrade the quality of the final concentrationmap.Moreover, our ap-
proach enables to optimize the residual correction based on different target performance measures, with a pos-
sibly different optimal correction depending on the performance measure used. Hence, different target
performance measures can be chosen to fit best the specific application of interest. The method is demonstrated
using output of three differentmodels used for estimating NOx andNO2 concentrations over Israel.We show that
our approach can be used as an exploratory step, for assessing the potential benefit of residual correction, and as a
simple alternative to Bayesian schemes.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Air pollution estimates are used for regulatory purposes, air re-
sources management, as well as for assessing associations between
them and different health outcomes. The power of the statistical
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analysis, the strength of the obtained associations and the width of the
confidence intervals depend, among other things, on the accuracy of
the exposure estimates and therefore on the underlying concentration
maps (Thomas et al., 1993; Armstrong, 1998; Zeger et al., 2000;
Basagana et al., 2013). For example, exposure errors of the classical
type tend to push the recovered association towards the null (Thomas
et al., 1993), and inadequate accuracy of the exposure estimates was
suggested to be the key reason for the relatively weak associations
found between air pollution and different health outcomes (Zeger
et al., 2000).

One approach to deal with exposure errors is to account for their ef-
fect within the epidemiological model that looks for an association be-
tween the exposure and the health outcome. For example, Gryparis
et al. (2009) accounted for the effect of spatial misalignment on risk es-
timates using generalized linearmodel framework.Molitor et al. (2006)
and Eitan et al. (2010) accounted for random exposure errors using hi-
erarchical Bayesian models, and Molitor et al. (2007) extended it for
cases with spatially autocorrelated exposure errors. Madsen et al.
(2008) developed a parametric bootstrap approach that jointly fits the
exposure and health models, and Szpiro et al. (2011) improved the
computational efficiency of the method and accounted for the effect of
spatially correlated errors. However, in general, adjusting epidemiolog-
ical models to exposure errors is difficult and computationally challeng-
ing, while not always assuring full account for their effects (Szpiro et al.,
2011; Basagana et al., 2013).

A different approach for improving the exposure estimates is by
minimizing the errors in the pollutant concentration estimates. Refining
the pollutant estimates, fromwhich exposure is derived, is undoubtedly
the most desired route. Yet, until models that predict pollutant disper-
sion and fate in the atmosphere are improved, which often takes some
time, an alternative approach is to use the information that is contained
in the residuals of the pollutant concentration maps in the locations
where observations exist. Overall, residuals can result from two general
sources: measurement errors due to instrument failure and/or calibra-
tion errors, and inaccuracy/bias in the estimation process, i.e. modelling
errors. While modelling errors are expected to result in a coherent
autocorrelated residual pattern, the distribution of measurement errors
is oftentimes random. Our goal is thus to correct the coherent spatial
pattern of the residuals but to avoid fitting the random measurement
errors. This challenge, sometimes referred to as the bias/variance dilem-
ma (Geman et al., 1992), can be addressed using either Bayesian
methods or cross-validation techniques.

Bestfitting the spatial features of the coherent errors can be obtained
using geostatistical interpolations. Indeed, since the early 2000s re-
searchers use corrections based on geospatial interpolations of the re-
siduals for improving the estimated pollutant concentrations (Blond
et al., 2003; Wackernagel et al., 2004; van de Kassteele et al., 2009).
For example, Hogrefe et al. (2009) corrected concentration maps pro-
duced by the photochemical Community Multiscale Air Quality Model
(CMAQ; Byun and Schere, 2006) using a one stage Inverse Distance
Weighting (IDW) (Isaaks and Srivastava, 1989) to map the ratio of the
observed-to-modeled concentrations. Bergen et al. (2013) and Mercer
et al. (2011) used a two-stage approach for improving estimates of ex-
posure to PM2.5 and NOx. In the primary stage they used a Land Use Re-
gression (LUR) model, based on an optimally-sized set of covariates,
while the second stage involved refining of the exposure estimates by
a kriging interpolation of the concentration residuals (i.e. presumably
with the nugget set to fit the residuals).

Kriging interpolation provides the best linear unbiased prediction
based on the spatial covariance structure of the residuals (Cressie,
1993). The latter is described by a variogram, whose mathematical
form relies on rather subjective decisions regarding the number of dis-
tance bins (lag sizes between paired observations) and the function
that describes and smooths the histogram of the observations (by
choosing its functional shape and parameters: nugget, sill, and range).
Yet, it is very challenging to find the optimal variogram parameters,

especially when tens of thousands of maps are required and while
allowing for possible temporal variation of the variogrammodel param-
eters. In particular, although applying cross-validation is conceptually
simple, finding the optimal parameters of a kriging interpolation by a
cross-validation process is computationally prohibitive. Hence, imple-
mentation of geostatistical interpolations for residual correction has
been carried out using Bayesian inference schemes (van de Kassteele
et al., 2009; Beckerman et al., 2013; Akita et al., 2014). Bayesian Maxi-
mumEntropy (BME) interpolation (Christakos et al., 2001) can combine
different information sources, including concentration residuals, and
improve the original concentration estimations. For example,
Beckerman et al. (2013) used the BME to correct LUR model monthly
PM2.5 residuals across the contiguous USA, and Akita et al. (2014)
used BME to integrate monitoring data and results of both a LUR and a
chemical transport models for estimating NO2 concentrations in Catalu-
nya, SP. However, Bayesian schemes are rather complex and may be
computationally intensive (Blangiardo et al., 2013). Moreover, poor se-
lection of the Bayesian prior probability distributions may result in an
inferior residual correction.

In this work, we demonstrate application of a leave-one-out cross-
validation (LOOCV) procedure to optimally correct pollution concentra-
tionmaps, using simple interpolation of the concentration residuals.We
demonstrate that the residuals can serve for examining the error struc-
ture of the original model, and that the LOOCV approach can be used as
an exploratory step for assessing the potential benefits of performing a
more comprehensive residual correction, as well as a simple alternative
for complex schemes like Bayesian methods. We demonstrate this ap-
proach by correcting estimated ambient NOx and NO2 concentrations
obtained using three different models that are currently in use for air
quality management and research in Israel.

2. Methods

2.1. Study area

The study domains of the three models used for demonstrating the
residual correction method are not identical, although they overlap
over the central coastal strip of Israel (Fig. 1). Most of the population
in this area, as well as the local emission sources, reside in a narrow
strip of width b 35 km along the Mediterranean coastline. Ambient
NOx concentrations in this area are mostly attributed to traffic, with
minor contributions from heavy industry and power plants. Israel's lit-
toral geography results in a vigorous land-sea breeze cycle that main-
tains good ventilation of the lower atmosphere. Since the daily mixing
layer is very rarely thinner than 500 m and due to usually strong day-
time winds, atmospheric stratification plays a relatively minor role in
determining air pollutant concentrations across the study area, and on
concentrations build-up during the high traffic hours. The common
75–150 m thickness of the night-time boundary layer is normally asso-
ciated with low traffic emissions and with easterly (land-sea) winds
that disperse the pollutants offshore to the Mediterranean.

2.2. Monitoring data

Air quality is observed in Israel by a network of air quality monitor-
ing stations that are maintained by the Ministry of Environmental Pro-
tection. Most of the stations are of an ambient monitoring type and
comply with the EU Council Directive 1999/30/EC for protection of
human health. Few stations are deployed close to major roads and are
designated traffic monitoring stations. The air quality monitoring data
used in this studywere obtained from theTechnion Center of Excellence
in Exposure Science and Environmental Health's air pollution monitor-
ing database (TAPMD). The database collates all the air quality monitor-
ing data observed in Israel since 1997 and, subsequently, quality
assurance/quality control procedures are applied to enhance them. In
this study we used the NOx and NO2 records observed by ambient
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