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H I G H L I G H T S

• An integrated Bayesian method was de-
veloped based on a generalized rate
equation.

• The method copes with model selection
and parameter estimation simulta-
neously.

• Model hypotheses were generated by
discrete parameters in rate equation.

• The method fully searches candidate
models but avoids high computation
cost.

• The method was validated through a
numerical case and a complex experi-
mental study.
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Selecting proper rate equations for the kinetic models is essential to quantify biotransformation processes in the
environment. Bayesianmodel selectionmethod can beused to evaluate the candidatemodels. However, compar-
isons of all plausiblemodels can result in high computational cost, while limiting the number of candidatemodels
may lead to biased results. In this work, we developed an integrated Bayesianmethod to simultaneously perform
model selection and parameter estimation by using a generalized rate equation. In the approach, the model hy-
potheses were represented by discrete parameters and the rate constants were represented by continuous pa-
rameters. Then Bayesian inference of the kinetic models was solved by implementing Markov Chain Monte
Carlo simulation for parameter estimation with the mixed (i.e., discrete and continuous) priors. The validity of
this approach was illustrated through a synthetic case and a nitrogen transformation experimental study. It
showed that our method can successfully identify the plausible models and parameters, as well as uncertainties
therein. Thus this method can provide a powerful tool to reveal more insightful information for the complex bio-
transformation processes.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

A variety of rate equations have been proposed to describe bio-
transformation processes in the environment (Aharoni et al.,
1991). First-order, zero-order and Michaelis-Menten (M-M) rate
equations were frequently applied in a wide range of reactions,
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including the decay of POPs (Casey and Simunek, 2001; Weetman
et al., 2015), carbon and N cycle (German et al., 2012; Müller
et al., 2014), release and sorption of compounds like metal ions
and pharmaceuticals (Fan et al., 2016; Inyang et al., 2016;
Martínez-Hernández et al., 2016) and photocatalytic activities of
nanoparticles (Xu et al., 2002; Murdoch et al., 2011). A first-order
rate equation assumes that the maximum concentration of the sub-
strate is much less than the half-saturation constant (Bekins et al.,
1998). If the substrate concentration is high, a zero-order rate
equation works better, while the M-M rate equation should be cho-
sen under conditions between first-order and zero-order kinetics.

Traditionally, the form of a rate equation in a kinetic model is
often chosen based on literature reports, and the corresponding re-
action rates are then obtained by fitting the experimental data to
the chosen rate equation. For example, micropollutant biotransfor-
mation in activated sludge is always modeled as pseudo first-order
process (Kern et al., 2010; Jasper et al., 2014). Nevertheless, the
consistency of the relationship between the rate equation and bio-
transformation properties has seldom been discussed in previous
literatures. Thus, it is questionable to directly employ the rate
equations from previous studies.

Recently, the process-based models have often been combined with
inverse modeling methods to provide more insightful information for
the complex biotransformation processes (Boisson et al., 2013;
Molina-Herrera et al., 2016). While some studies attempted to select
the rate equation from several candidates to obtain the best kinetic
model (Müller et al., 2004; Wu et al., 2015), most other studies still
chose their rate equations based on the previous literature, which may
lead to the misuse of kinetic models (Scow et al., 1986; Sparks, 2013).

Bayesian inference can provide a rigorous framework for model se-
lection and parameter estimation (Box and Tiao, 2011). However,
when the number of candidate reactions is large, the computational
cost in evaluating the alternative kinetic models is practically unafford-
able. Ye et al. (2004) developed amaximum-likelihood-estimate (MLE)
approximation for Bayesian model averaging in unsaturated fractured
tuff. Toni et al. (2009) developed an Approximated Bayesian computa-
tion method for parameter estimation and model selection for dynami-
cal processes. A Bayesian model selection approach was employed to
develop a data-informed model to discuss the relationship between
N2O emissions and WFPS and soil temperature (Huang et al., 2013).
Galagali and Marzouk (2015) imposed the point-mass mixture priors,
which included a mass at zero mixed with a continuous density over
rate constants.

To improve the full search of candidate models and simplify the
process of model selection, we used a generalized rate equation in
the kinetic models and for the rate constants estimation of bio-
transformation processes in this paper. The selection among reac-
tion equations can be achieved by simply setting the indexing
parameters as prescribed discrete values, and the indexing param-
eters can be simultaneously estimated with respective reaction
rate parameters by Markov Chain Monte Carlo (MCMC), a sampling
method to draw posterior realizations. Another related sampling
approach, i.e., reversible-jump MCMC (Green, 1995), has been ap-
plied to infer kinetic models (Oates et al., 2012). In practice, how-
ever, it is difficult to design appropriate proposal distributions for
between-model moves in a reversible-jump MCMC algorithm
(Green and Hastie, 2009).

Comparing with other model selection techniques, the pro-
posed approach generates the model hypotheses systematically
and reduces the model selection to parameter estimation with dis-
crete priors. Combined with the state-of-art adaptive MCMC, this
approach provides a more direct and efficient tool for kinetic
model selection and parameter estimation. In this work, the valid-
ity of this proposed method was illustrated by a synthetic numeri-
cal case and a complex nitrogen (N) transformation experimental
study.

2. Methods

2.1. Generalized rate equation

The dynamics of a contaminant in the biotransformation processes
can be defined as follows:

dc
dt

¼ ∑
m

i¼1
vi ð1Þ

where c is the concentration of the contaminant, t is time, v is reaction
rate, i is the index of reaction pathway, m is the total number of reac-
tions for the contaminant in the biotransformation processes. vi denotes
the rate of i-th reaction, which is defined by the following generalized
rate equation:

v ¼ Vc
aK þ bc

ð2Þ

where a and b are control parameters equal to either zero (0) or one (1).
Three combinations of a and b are considered to realize the switch of
rate equations among first-order (a = 1 and b = 0), zero-order (a =
0 and b = 1) and M-M (a = 1 and b = 1) rate equations.

When the rate equation uses the form of M-M kinetics, K is the sub-
strate concentration at the half-maximal velocity and V is the maximal
velocity. Here K, V, a and b are all unknown kinetic parameters to be es-
timated. By searching the optimal combinations of a and b for each reac-
tion pathway, the optimal kinetic models of biotransformation
processes can be identified, which is realized by parameter estimation
with discrete priors.

For complex biotransformation processes with multiple pools, a set
of ordinary differential equations (ODEs) are developed according to
Eq. (1). These models were programmed with Matlab® in this work.
The ODE solver (ode15s) was employed due to its capability in dealing
with stiff problems (Ebert et al., 2012).

2.2. Bayesian inference

Bayesian model selection can be used to compare candidate models
M1, …,MN by computing the posterior probability for each model
(Wasserman, 2000). The posterior probability for modelMn is given by

p MnjYð Þ ¼ p YjMnð Þp Mnð Þ
∑N

l¼1p YjMlð Þp Mlð Þ
ð3Þ

where

p YjMnð Þ ¼ ∫p Yjθn;Mnð Þp θnjMnð Þdθn ð4Þ

is the integrated likelihood ofmodelMn, θn is the vector of parameters of
model Mn, p(θn |Mn) is the prior probability of θn under model Mn,
p(Y |θn,Mn) is the likelihood, and p(Mn) is the prior probability that
modelMn is the true model. The model that maximizes P(Mn |Y) is con-
sidered as the optimal model. Therefore, the model selection relies on
the computation of posterior probability P(Mn |Y) for each model,
which can result in high computational cost if the number of candidate
models is large. On the other hand, limiting the number of candidate
models would lead to potential bias in model selection.

To solve this problem,we converted themodel selection into param-
eter estimation of a and b in Eq. (2). To simplify the implementation,we
introduced an indexing parameter S to represent the three combina-
tions of a and b (i.e., if S = 1, a = 1 and b = 0 for first-order; if S = 2,
a = 0 and b = 1 for zero-order; if S = 3, a = 1 and b = 1 for M-M ki-
netics). Let θ′ denote the vector of all the parameters and assume that
the kinetic parameters for each reaction are independent. Then,
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