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Article history: Existing mountain permafrost distribution models generally offer a good overview of the potential extent
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- - To overcome this lack, we tested an alternative modelling approach using three classification algorithms
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belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random
forests. These supervised learning techniques infer a classification function from labelled training data (pix-
els of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it
Classification algorithms is unknown. The research was car'ried oqt in a 588.km2 area of t.he Western swiss Alps. Permafrost c'evi-
Machine learning dences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly
Mapping geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost
controlling factors was computed with the mentioned techniques. Classification performances, assessed
with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with
Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost
distribution modelling thanks to consistent results compared to the field reality. The high resolution of the
input dataset (10 m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distri-
bution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms
offers a more precise overview of the potential distribution of mountain permafrost than proposing simple
indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of
permafrost data analysis and mapping.
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1. Introduction of the increase in air temperatures and the modifications of pre-
cipitation regimes. Among the cryospheric components, mountain

Within the 21st century, the Alpine environment is going to permafrost describes a ground with temperatures at or below
experience deep modifications of the cryosphere as a consequence 0°C for two consecutive years (Harris et al., 2009; Beniston et al.,
2017). Permafrost in rock walls and sedimentary accumulations may

degrade as a consequence of the climate change (Etzelmiiller and
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slope stabilities, such as an increasing rock fall activity (Gruber and
Haeberli, 2007; Ravanel et al., 2010) or a rock glacier acceleration
(Kaab et al., 2007; Roer et al., 2008; Delaloye et al., 2010; PERMOS,
2016), leading to an increase of the sediment transfer rates (Lane et
al.,, 2007; Kobierska et al., 2011).

In the European Alps, the periglacial belt is generally marked by
the absence of trees, a reduced vegetation cover (where existing
essentially made of meadow, mosses and lichens), large volumes of
sediment debris, steep slopes and rock faces. Although permafrost
may affect all these different types of terrains, its unambiguous mor-
phological manifestation only occurs in active rock glaciers, which
are considered as the visible expression of mountain permafrost
creep (Haeberli, 1985). Other permafrost indicators are thrust- or
push-moraines, corresponding to frozen sediments deformed by
the glacier advance during the Little Ice Age, whereas large areas
in glacier forefields located in the periglacial belt appear to be
unfrozen (Reynard et al., 2003; Harris and Murton, 2005; Kneisel
and Kadb, 2007; Bosson et al., 2015). Talus slopes constitute other
major landforms of alpine environments where permafrost is gener-
ally restricted to the lower half of the slope (e.g. Lambiel and Pieracci,
2008; Otto and Sass, 2006; Scapozza et al.,, 2011). It is also well
established that terrains covered by alpine meadow are generally
permafrost free (Haeberli, 1975). The distribution of mountain per-
mafrost is thus extremely discontinuous in mountain areas (see also
Ribolini et al., 2010; Otto et al., 2012).

The ability of modelling the spatial distribution of such a complex
phenomenon became an important task for the alpine permafrost
research during the last two decades. First empirico-statistical mod-
els were based on simple approaches (such as linear regression)
and offered a good overview of the potential distribution of moun-
tain permafrost at the regional scale (i.e. Hoelzle, 1994; Ebohon and
Schrott, 2008; Avian and Kellerer-Pirklbauer, 2012). These models
are generally thresholding the occurrence of permafrost on the basis
of a restricted number of topographical and climatic parameters (i.e.
altitude of rock glacier fronts for a given orientation) and are vali-
dated with measurements of the ground surface temperature, which
may be subject to bias. The availability of an increasing amount of
high resolution data (generally derived from high resolution digital
elevation models) opened then the way to new complex statistical
models able to deal with a large number of predictors (i.e. Boeckli
et al., 2012; Schoner et al., 2012; Magnin et al., 2015; Az6car et al.,
2016; Sattler et al., 2016). Although they offer a good overview of the
permafrost distribution at local scale (i.e. scale of a valley side), these
models do not reflect the great heterogeneity of the phenomenon
at the scale of a specific landform (the micro-scale; covering ten to
several hundreds of meters).

To address the need of an improved prediction of the permafrost
extent at the micro-scale, we propose an alternative approach,
which employs classification algorithms belonging to statistics
and machine learning, namely Logistic regression, Support Vector
Machines and Random forests. These algorithms can deal with
complex and high dimensional datasets (Bishop, 2006) and they
derive functional dependencies directly from data without appeal-
ing to physical models (Hastie et al., 2009). They have successfully
been adopted for mapping the spatial distribution of several nat-
ural phenomena (i.e. Amatulli et al., 2013; Varley et al., 2016). In
the periglacial research such techniques have been already used for
geomorphological mapping (Luoto and Hjort, 2005), landform char-
acterization (Marmion et al., 2008) or permafrost mapping using
satellite images (Ou et al., 2016). Accordingly, we collected field
observations indicating the known presence or the known absence
of mountain permafrost and related topo-climatic data for a specific
area of the Western Swiss Alps. The dataset built was analyzed and
used to investigate the potential of machine learning techniques for
mapping the high spatial discontinuity of mountain permafrost. Fur-
thermore, as the potential permafrost distribution in rockwalls had

already been successfully modelled in other studies (i.e. Gruber et
al., 2004; Noetzli et al., 2007; Magnin et al., 2015), the present work
focuses only on sedimentary accumulations.

2. Materials and methods
2.1. Permafrost evidences and explanatory variables

This study was carried out in a sector of the Western Valais Alps
(Switzerland) covering a regular grid of 588 km?, with more than
60% above the theoretical permafrost lower limit of 2500 m.a.s.l.,
delimiting the lower boundary of the periglacial belt in the area
(Lambiel and Reynard, 2001).

We used evidences of known permafrost presence or absence
collected since the mid-1990s by the Universities of Lausanne and
Fribourg as training data for employed machine learning algorithms
(Fig. 1). These evidences have been obtained from two distinct
sources:

- Rock glacier inventories. Permafrost presence or absence can be
derived from rock glacier maps, based on their activity. Indeed,
active or inactive rock glaciers suggest the existence of per-
mafrost conditions, whereas relict ones indicate its absence
(see Haeberli, 1985; Humlum, 1996; Barsch, 2012). For this
study, we employed some existing inventories (Delaloye and
Morand, 1998; Morand, 2000; Lambiel and Reynard, 2003), for
which rock glaciers were mapped directly in the field. Some
additional rock glaciers located within the study area were
also added through ortho-image interpretation. All rock glacier
limits were then corrected with a comparison with recent
orthophotos (Swissimage, from swisstopo) and their activity
was verified with the analysis of geomorphic signatures and
InSAR signals (Delaloye et al., 2007; Barboux et al., 2014).

- Geoelectrical and thermal data. Direct-current (DC) resistivity
methods are well established tools for detecting permafrost
in sediments (Hauck and Kneisel, 2008). Electrical resistiv-
ity tomography (ERT) is especially often utilized to detect
ground ice and characterize frozen materials in permafrost
environments (e.g. Hauck et al.,, 2003; Hilbich et al., 2009;
Otto et al., 2012). In addition, permafrost can also be inferred
from ground surface temperature measurements (Hoelzle et
al., 1999; Carturan et al., 2015). Coupling geoelectrical and
thermal data can thus improve the reliability of permafrost
mapping. Following the procedure employed by Lambiel (2006,
p. 95) and Scapozza et al. (2011), we compiled and com-
bined geoelectrical and thermal data collected in the frame-
work of different studies aiming at detecting and mapping
ground ice in permafrost environments — mainly talus slopes
and glacier forefields - of our study area (Marescot et al.,
2003; Reynard et al., 2003; Delaloye, 2004; Delaloye and Lam-
biel, 2005, 2008; Lambiel, 2006; Lambiel and Pieracci, 2008;
Scapozza et al,, 2011; Scapozza, 2013; Staub et al., 2015).
Completed by thermal measurements gathered for the Swiss
Permafrost Monitoring Network (PERMOS, 2016) and by other
unpublished projects, these data were used to map the per-
mafrost extension in the prospected landforms. This provided
to the classification algorithms additional training examples
also located outside rock glaciers. Negative training obser-
vations (known permafrost absence) resulted not only from
in-situ measurements indicating warm conditions or absence
of ground ice, but also from expert knowledge. We particu-
larly used the conclusions of Lambiel and Pieracci (2008) and
Scapozza et al. (2011) that showed the general absence of
permafrost in the upper half of talus slopes.
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