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H I G H L I G H T S

• Novel materials and nanomaterials for
CO2 and CH4 sorption are presented
and compared.

• Thesematerials have high selectivity for
both gases, are easy to regenerate and
cheap.

• Fe3O4-graphene and MOF-117 based
NPs have reported the highest CO2 sorp-
tion capacities.

• IRMOF-6, MOF-177 and MOF-5 showed
the highest adsorption capacities for
CH4.

• Further studies are needed to prove their
long term efficacy in real applications.
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Innovative gas capture technologies with the objective to mitigate CO2 and CH4 emissions are discussed in this re-
view. Emphasis is given on the use of nanoparticles (NP) as sorbents of CO2 and CH4,which are the twomost impor-
tant global warming gases. The existing NP sorption processes must overcome certain challenges before their
implementation to the industrial scale. These are: i) the utilization of the concentrated gas stream generated by
the capture and gas purification technologies, ii) the reduction of the effects of impurities on the operating system,
iii) the scale up of the relevant materials, and iv) the retrofitting of technologies in existing facilities. Thus, an inno-
vative design of adsorbents could possibly address those issues. Biogas purification and CH4 storagewould become a
newmotivation for the development of newsorbentmaterials, such as nanomaterials. This reviewdiscusses the cur-
rent state of the art on the use of novel nanomaterials as adsorbents for CO2 and CH4. The review shows that mate-
rials based on porous supports that are modified with amine or metals are currently providing the most promising
results. The Fe3O4-graphene and theMOF-117 basedNPs show the greatest CO2 sorption capacities, due to their high
thermal stability andhighporosity. Conclusively, one of themain challengeswould be to decrease the cost of capture
and to scale-up the technologies to minimize large-scale power plant CO2 emissions.
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1. Introduction

1.1. Greenhouse gases – problem statement

GlobalWarming (GW) is the result of the increased concentration of
Green House Gases (GHGs), primarily carbon dioxide (CO2) and meth-
ane (CH4), but also of nitrous oxide (N2O), hydrofluorocarbons
(HFCs), perfluorocarbons (PFCs) and sulfur hexafluorocarbon (F6C).
The GHGs that are most abundantly emitted today are CO2 (56%) and
CH4 (18%) (Houghton et al., 2001; McCarthy, 2001). As CO2 is the
most important gas in terms of amounts emitted, it has been widely
studied (Pacala and Socolow, 2004).

CO2 is produced in many industrial processes (i.e. fossil fuel power
plants) including new prospective areas, such as the purification of hy-
drogen from biomass. Fossil fuel power plants are the largest point
sources of CO2 emissions (40% of total CO2 emissions) (D'Alessandro
et al., 2010); thus, they are themain targets for imminent CO2 reduction
(Doman et al., 2010; Metz et al., 2005).

Atmospheric concentrations of CH4 (∼1800 ppb) are currentlymuch
higher than those in preindustrial levels (∼680–715 ppb) (Butler and
Montzka, 2012). Anthropogenic CH4 emissions account for 50–65% of
the global CH4 budget of ∼395–427 TgC y−1 (526–569 Tg CH4)
(Kirschke et al., 2013). It is estimated that the principal CH4 anthropo-
genic sources are (i) livestock (enteric fermentation and manure man-
agement), (ii) natural gas production and distribution, (iii) landfills,
and (iv) coalmining (EPA, 2016). Also, it is reported that a rise in natural
wetland emissions and fossil fuel emissions probably accounts for the
renewed increase in global methane levels after 2006, although the rel-
ative contribution of these two sources remains uncertain (Kirschke
et al., 2013).

The most convenient path towards lower CO2 concentrations in the
atmospherewould be to strongly reduce CO2 emissions through cleaner
and more environmentally friendly industrial processes. However, it
is not expected that this can be achieved in the imminent future
(Ciferno et al., 2009). Several options exist to reduce CO2 emissions,
such as demand-side conservation, supply-side efficiency improve-
ment, increasing dependence on nuclear and renewable energy, and
implementation of Carbon Capture and Storage (CCS) systems
(D'Alessandro et al., 2010; Ciferno et al., 2009; Spigarelli and Kawatra,
2013; Yang et al., 2008).

The CO2 capture is preferred to be applied directly on-site, since the
capture materials and technologies have demonstrated better perfor-
mances at high CO2 concentrations rather than at atmospheric levels
(400 ppm in 2014, Mauna Loa Observatory) (Baltrėnaitė et al., 2016).

1.2. Capture of GHGs via sorption

The storage of CH4 on adsorbents has been pursued actively as an al-
ternative to high pressure compressed gas storage. Thus, the use of ad-
sorbent materials, such as activated carbons and zeolites for the storage
of natural gas at low pressures, has also been reported (Solar et al.,
2010). However, it was concluded that none of those conventional ad-
sorbents showed sufficient CH4 storage capacity to meet that required
for commercial viability (Saha et al., 2010). Advanced materials have
been investigated as potential CH4 adsorbents including modified acti-
vated carbons, metal-organic frameworks (MOFs) and other porous
polymers (Kizzie et al., 2014).

The technologies based on adsorption processes, such as activated
carbon, zeolites and mesoporous silica, present limitations on the CO2

retention capabilities per adsorbent mass (Cinke et al., 2003; Lu et al.,
2008; Smart et al., 2006). In this sense, there is a widespread interest
in the development of advanced adsorbent materials with better char-
acteristics than conventional materials and with a specialized function-
ality for each pollutant.

Since CH4 often co-exists with CO2 in gaseousmixtures, such as nat-
ural gas, biogas and landfill gas, selective removal of CO2 is an important
process to upgrade the energy content of thosemixtures (Li et al., 2013).

Nanotechnology can be defined as the engineering of functional sys-
tems “designed tomeasure”molecular scale. One of the benefits of these
nanomaterials is the high surface to volume ratio and the ability to be
synthesized with specific physicochemical properties. Nanotechnology
has been applied in various areas of environmental sciences, such as ca-
talysis, sensors and water treatment (Birgisson et al., 2012).

Several articles on water purification processes using NPs have been
published focusing on the removal of metals (Contreras et al., 2015;
Recillas et al., 2010; Sánchez et al., 2011; Xu and Zhao, 2007) or nutri-
ents (Abo Markeb et al., 2016a; Abo Markeb et al., 2016b; Choe et al.,
2000; Sá et al., 2009). This shows the potential of nanotechnology to re-
move contaminants. Only recently, certain nanomaterials, namely the
metal-organic frameworks (MOFs), have achieved satisfactory CO2
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