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H I G H L I G H T S

• Limitations in depth and spatial density
of soil inventories hamper environmen-
tal mapping.

• By combining depth extrapolation with
digital soil mapping we estimated top-
and subsoil organic carbon stocks.

• Soil and vegetation characteristics were
identified as key predictors of both top-
and subsoil stocks.

• Subsoil stocks should not be neglected
in ecosystem service assessments.
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The soil organic carbon (SOC) stock is an important indicator in ecosystem service assessments. Even
though a considerable fraction of the total stock is stored in the subsoil, current assessments often consider
the topsoil only. Furthermore, mapping efforts are hampered by the limited spatial density of these topsoil
measurements. The aim of this study was to assess the SOC stock in the upper 100 cm of soil in 30,556 ha of
Low-Input High-Diversity systems, such as nature reserves, in Flanders (Belgium) and compare this
estimate with the stock found in the topsoil (upper 15 cm). To this end, we combined depth extrapolation
of 139 measurements limited to the topsoil with four digital soil mapping techniques: multiple linear re-
gression, boosted regression trees, artificial neural networks and least-squares support vector machines.
Particular attention was given to vegetation characteristics as predictors. For both the stock in the upper
15 cm and 100 cm, a boosted regression trees approach was most informative as it resulted in the lowest
cross-validation errors and provided insights in the relative importance of predictors. The predictors of
the stock in the upper 100 cm were soil type, groundwater level, clay fraction and community weighted
mean (CWM) and variance (CWV) of plant height. These predictors, together with the CWM of specific
leaf area, aboveground biomass production, CWV and CWM of rooting depth, terrain slope, CWM of mycor-
rhizal associations and species diversity also explained the topsoil stock. Our total stock estimates show that
focusing on the topsoil (1.63 Tg OC) only considers 36% of the stock in the upper 100 cm (4.53 Tg OC). Given
the magnitude of subsoil OC and its dependency on typical ecosystem characteristics, it should not be
neglected in regional ecosystem service assessments.
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1. Introduction

The effective and potential level of services that ecosystems provide
is increasingly inspiring land use planning (Goldstein et al., 2012;
Broekx et al., 2013; Galati et al., 2016). For such mapping and assess-
ments, the soil organic carbon (SOC) stock is an important indicator
(Maes et al., 2016). Whereas a considerable fraction of the total SOC
stock is known to be stored in the subsoil (Batjes, 1996; Jobbágy and
Jackson, 2000) and should not be neglected in an ecosystem service
context (Jandl et al., 2014), routinely available measurement data and
hence stock estimates are often limited to the topsoil, e.g. see Minasny
et al. (2013). To include the subsoil stock, vertical extrapolation of the
topsoil measurement is often necessary. However, the commonly used
exponential decline function is not capable to accurately model the
stock in soil types characterised by SOC-rich subsurface horizons, such
as spodic and peat horizons (Sleutel et al., 2003; Aldana Jague et al.,
2016). To take these ‘anomalies’ into account, we have developed an ex-
ponential change decline function in earlier research, assuming that not
the OC content but rather the difference between the target (2009–
2011) and the historical (1947–1974) reference topsoil measurement
value declines exponentially with depth (Ottoy et al., 2016).

Another shortcoming of routine soil sampling is its limited and het-
erogeneous spatial density which is a weak basis for regional SOC stock
assessments (Carré et al., 2007; Ottoy et al., 2015). In many cases, soil
profiles have been sampled for the major land units (LUs), but are lack-
ing for the many minor LUs. To cope with this lack of data, digital soil
mapping or ‘SCORPAN’ approaches have been proposed which exploit
the covariance of a soil variable (s) with predictors representing
Jenny's (1941) soil forming factors (climate (c), organisms (o), topogra-
phy (r), parentmaterial (p), age (a)) extendedwith geographic position
(n) (McBratney et al., 2003). For the case of SOC stock modelling, nu-
merous techniques have been proposed, ranging from multiple linear
regression (Meersmans et al., 2008) to more recently developed ma-
chine-learning methods like Boosted Regression Trees, Artificial Neural
Networks and Support VectorMachines (Martin et al., 2014;Were et al.,
2015; Taghizadeh-Mehrjardi et al., 2016).

These SCORPAN-methods do not only contribute to more reliable
SOC stock assessments, but also provide insights in the relative impor-
tance of the candidate predictors of the SOC stock andhence in the func-
tioning of the soil system. At the biome level, climate variables such as
mean annual precipitation and temperature and their interaction with
vegetation are important controls of the SOC storage capacity of soils
(Jobbágy and Jackson, 2000; O'Rourke et al., 2015). At the regional
scale, physical and chemical soil variables like the texture fraction,mois-
ture content, pH and soil profile development are typically identified as
variables explaining SOC storage (Meersmans et al., 2008;Wiesmeier et
al., 2011; Were et al., 2015). In addition, land use intensity including
manure application was found to explain regional variations in the
SOC stock (van Wesemael et al., 2010; Parras-Alcántara et al., 2015a;
Manning et al., 2015). Another important representative of SCORPAN's
‘organism’ factor is the vegetation, which can contribute to controlling
both soil carbon input and loss (Chapin, 2003; De Deyn et al., 2008)
and hence the resulting SOC stock (Grigulis et al., 2013; Manning et
al., 2015). Similarly, diversity of plant species (Tilman et al., 2006) and
functional groups (Steinbeiss et al., 2008) were found to affect SOC
storage.

The aim of this study was to assess the SOC stock in the upper
100 cm of soil of Low-Input High-Diversity (LIHD) systems in Flanders
(Belgium) using available topsoil (upper 15 cm) measurements. Man-
aged nature reserves are typical LIHD systems characterised by low
levels of inputs (e.g. manure application) and high species diversity. Re-
cently, these systems have come into the picture due to their high po-
tential to mitigate climate change through the production of
bioenergy (Tilman et al., 2006; Van Meerbeek et al., 2016), but their
SOC storage capacity remained relatively underexplored. To include
the subsoil in our regional assessment and spatially densify the available

measurements, we combined depth extrapolation of topsoil measure-
ments with digital soil mapping. Additionally, this estimate was com-
pared with the stock found in the topsoil only. Through this process,
we aimed at identifying the main predictors of top- and subsoil stocks,
considering various soil properties, plant functional traits and trait di-
versity measures.

2. Material and methods

2.1. Study area

We assessed the SOC stocks in the upper 15 and 100 cm of mineral
soil of LIHD systems in the region of Flanders, N. Belgium. This region
of 13,522 km2 is characterised by a maritime temperate climate, with
a mean annual temperature of 9.8–10.5 °C (mean minimum of 6.7 °C
and maximum of 13.8 °C) and a mean annual precipitation of 733–
832 mm (Peel et al., 2007). A pronounced gradient of decreasing sand
and increasing silt fractions is present from north to south.

2.2. Soil and environmental data

2.2.1. Soil and vegetation sampling
From 2009 to 2011, 139 sites in nature reserves across different

ecoregionswere visited and sampled following the procedure described
in VanMeerbeek et al. (2014). At each site, a plot of 10 × 10 mwas po-
sitioned in a homogeneous vegetation patch. Therein three subplots of
0.5 × 0.5 m were randomly selected, forming a composite sample. In
each subplot, the topsoil was sampled to a depth of 15 cm. The SOC con-
tent (%) was determined using a modified version of the Walkley and
Black (1934)method. A correction factor of 1.14 was applied to account
for incomplete oxidation (Lettens et al., 2005). Also the aboveground
biomass was harvested in each subplot. The SOC content and the dry
weight of the harvested biomass were averaged over the three subplots
to obtain one value per plot. Furthermore, the cover (%) of each plant
species was visually estimated for the subplots.

2.2.2. Plant functional traits and trait diversity
Trait-based diversity indices were chosen to represent the twomain

classes of effects of biodiversity on ecosystem processes, namely the
complementarity effect and the selection effect (Loreau and Hector,
2001). First, the communityweightedmean value (CWM)was calculat-
ed for each trait in each plot. Weighting was done by the relative abun-
dance (cover, %) of the plant species. CWM corresponds to the selection
effect in which dominance by species with particular traits affects eco-
system processes (Loreau and Hector, 2001). Next, the functional dis-
persion (FDis) index is the weighted mean distance of the species to
their centroid in a multivariate trait space (Laliberté and Legendre,
2010), and is an indicator of variability of the trait values in a communi-
ty. The third trait-based index consideredwas the communityweighted
variance (CWV) (Sonnier et al., 2010). It is theweighted variance of trait
valueswith respect to the CWM. Both FDis and CWV are used as proxies
for the complementarity effects, in which niche complementarity leads
to higher resource use and ecosystem functioning (Loreau and Hector,
2001).

To compute the three selected trait-based diversity indices, we
selected twelve functional traits based on their assumed relevance
for belowground carbon sequestration (De Deyn et al., 2008;
Pérez-Harguindeguy et al., 2013) and extracted corresponding trait
values from the TRY database (Kattge et al., 2011). Because of the high
percentage of missing values in the trait matrix (41%), we estimated
the missing values using a phylogeny with the ‘Rphylopars’ package of
R-software (Goolsby et al., 2016). This package can perform missing
data imputation on an estimated evolutionary model, in our case a
brownian motion model. The phylogenetic tree used in this analysis
was constructed from the dated phylogeny for higher plants ofWestern
Europe (Durka and Michalski, 2012) with the ‘Picante’ package of
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