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H I G H L I G H T S

• Uncertainties undermine the utility of
fire spread predictions.

• Model parameter calibration was made
using the GLUE methodology.

• Prediction accuracy was estimated
using satellite active fire data.

• The impact of uncertainty was reduced,
improving prediction accuracy.

• Large potential to improve future fire
spread predictions.
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Predicting fire spread and behavior correctly is crucial tominimize the dramatic consequences of wildfires. How-
ever, our capability of accurately predicting fire spread is still very limited, undermining the utility of such sim-
ulations to support decision-making. Improving fire spread predictions for fire management purposes, by using
higher quality input data or enhanced models, can be expensive, unfeasible or even impossible. Fire managers
would benefit from fast and inexpensive ways of improving their decision-making. In the present work, we
focus on i) understanding if fire spread predictions can be improved through model parameter calibration
based on information collected from a set of large historical wildfires in Portugal; and ii) understanding to
what extent decreasing parametric uncertainty can counterbalance the impact of input data uncertainty. Our re-
sults obtained with the Fire Area Simulator (FARSITE) modeling system show that fire spread predictions can be
continuously improved by ‘learning’ from past wildfires. The uncertainty contained in the major input variables
(wind speed and direction, ignition location and fuel models) can be ‘swept under the rug’ through the use of
more appropriate parameter sets. The proposed framework has a large potential to improve future fire spread
predictions, increasing their reliability and usefulness to support firemanagement and decisionmaking process-
es, thus potentially reducing the negative impacts of wildfires.

© 2017 Elsevier B.V. All rights reserved.

Keywords:
Satellite
FARSITE
MODIS
Hotspots
Likelihood
Generalized Likelihood Uncertainty Estimation
(GLUE)

1. Introduction

Wildfires are a disruptive phenomenonwith important environment
and socio-economic impacts. Accurately predicting and anticipating fire
spread and behavior is crucial to minimize dramatic consequences. For
this purpose, fire spread models have been widely used to support fire
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management decisions, such as in real-time fire behavior prediction
(Kochanski et al., 2013), anticipated fire risk assessment (Calkin et al.,
2011), fire suppression preparedness (Sneeuwjagt and Peet, 1985) and
fire and fuel hazard mitigation resulting from planned fuel treatments
(Ager et al., 2010).

The capability of accurately predictingfire spread is still very limited,
and associated uncertainties strongly undermine the utility of such pre-
dictions for decision-making (Alexander and Cruz, 2013a). Modeling
fire behavior is uncertain mainly due to imperfect scientific knowledge
regarding the mechanisms driving fire spread, model applicability and
its inherent limitations, input data quality, natural variability, and para-
metric uncertainty (Albini, 1976; Alexander and Cruz, 2013b; Ervilha
et al., 2017; Liu et al., 2015; Refsgaard et al., 2007; Thompson and
Calkin, 2011). In a general sense, the lack of knowledge (epistemic un-
certainty), rather than simple random variability, can be responsible
for important prediction errors (Beven and Binley, 2014). For instance,
it has been shown that errors in input data can lead to large prediction
errors (Albini, 1976; Anderson et al., 2007; Bachmann and Allgöwer,
2002; Benali et al., 2016a).

There is a certain inability of the current fire-research modeling
community to completely take into account the strong limitations im-
posed by the pervasive levels of uncertainties. This is of paramount rel-
evance, as fire spread simulationswill only be deemed useful if they can
provide reliable information to fire managers. Understanding how sim-
ulations can be improved is, therefore, a critical research task that can
contribute to mitigate negative downstream consequences. For exam-
ple, in an operational context, anticipating correctly where and when
a locationwill burn, and the corresponding level of confidence, is impor-
tant to define suppression strategies (Pinto et al., 2016). On the other
hand, in a pre-operational context, improving fire spread predictions
can, for example, render more reliable assessments of fire risk and im-
prove fuel management decisions (Ager et al., 2010; Salis et al., 2013).

Currently, there are many fire spread models available that range
from empirical to physically-based (Sullivan, 2009a, b, c). Each option
has advantages and disadvantages that depend on several aspects, such
as computational and data demand, costs, accuracy, complexity, among
others (Papadopoulos and Pavlidou, 2011). Among these, the Fire Area
Simulator (FARSITE) modeling system (Finney, 2004) has been widely
used to simulate the spread and behavior of individual fires. Its accuracy,
easiness to use, along with its moderate complexity, data size demands
and computation times, have been recognized by many authors (Arca
et al., 2007; Papadopoulos and Pavlidou, 2011; Salis et al., 2016;
Sullivan, 2009c). FARSITE, alongwith several otherfiremodeling systems,
uses the Rothermel semi-empirical fire spread model (Rothermel, 1972)
to predict rate of spread (ROS) at any given spread direction of a surface
fire. It is based on topographic, weather and vegetation information. The
latter is based on fuel models that consist of a numerical description of
the structure and composition of surface organic matter capable of flam-
ing combustion (Anderson, 1982). Fuel models are composed by several
parameters describing the fuel complex,with different impacts on the ex-
pected fire behavior (Ervilha et al., 2017; Liu et al., 2015).

Fire spread predictions can be improved in a number of ways, name-
ly by i) increasing scientific knowledge driving fire behavior and spread
mechanisms; ii) developing more accurate and reliable models; iii)
using higher quality input data; and iv) model calibration. However,
we have different levels to improve these “four horses of apocalypse”
that hamper fire-spreadmodel results. Improving data, models and sci-
entific knowledge, may involve challenging tasks that are too expensive
and time consuming. Additionally, the complexity of models can signif-
icantly undermine their application by firemanagers. Consequently, the
characteristics of these options rarely coincide with the demands and
requirements offiremanagers for short-term and inexpensive improve-
ments of fire spread predictions.

Within this context, model calibration can be a relatively inexpen-
sive, fast and simple way of improving fire spread predictions, and con-
sequently, decision-making. Several fire modeling systems have

enclosed in their model structure parameters (i.e. the empirical values
constant throughout the simulations) that can be adjusted with the ob-
jective of improving the agreement between estimated and observed
fire spread and behavior (Cruz and Alexander, 2010; Finney, 2004;
Mandel et al., 2014). Among these, the calibration of fuel model param-
eters has been often done with significant improvements to fire spread
prediction accuracy (Ascoli et al., 2015; Cai et al., 2014; Cruz and
Fernandes, 2008; Rothermel and Rinehart, 1983; Salis et al., 2016). Nev-
ertheless, the large uncertainties associatedwith the lack of detailed and
accurate information required for fuel mapping at large spatial scales
(Keane and Reeves, 2012), as well as the spatial variability within
each mapping unit (Hilton et al., 2015), can significantly jeopardize
the utility of fuel model calibration for prediction improvement.

Alternatively, Duguy et al. (2007) used FARSITE to reproduce the fire
spread patterns of an historical event by tuning the ROS adjustment fac-
tors, scalars that multiplied by the estimated ROS and that do not affect
other fire behavior outputs. Contrary to several parameters that are not
easily accessible to the average fire model user for model calibration,
these empirical factors are used to rapidly adjust the fire spread rate
based on the expected or observed fire behavior for each individual
fuel model (Finney, 2004; Rothermel and Rinehart, 1983). Despite this
effort, the potential improvement of fire spread predictions that result
from tuning such empirical parameters remains largely unknown. In
particular, it is still unknown if this simple calibration approach can be
applied to other wildfires to effectively reduce prediction errors, or if
they are mostly case-specific and have little effectiveness in improving
predictions of subsequent wildfires.

We explorewhether the calibration of the empirical ROS adjustment
factors of FARSITE can be a simple, fast and inexpensive way of improv-
ing the consequent fire spread predictions. We do not consider the un-
certainties associated with fuel model parameters that have been
studied elsewhere (Ascoli et al., 2015; Bachmann and Allgöwer, 2002;
Ervilha et al., 2017; Liu et al., 2015). The impact of data uncertainty is
taken into account based on preceding work (see Benali et al., 2016a).
Investigating other sources of uncertainty is outside the scope of the
work, however, the readers are referred to Thompson and Calkin
(2011) and Webley et al. (2016) for further information. Here, we pro-
pose to i) quantify how fire spread predictions can be improved through
model parameter calibration based on information collected from his-
torical large wildfires; and ii) understand to what extent decreasing
parametric uncertainty can counterbalance the impact of input data un-
certainty. For this purpose, the fire spread predictions are evaluated
using satellite active fire data for seven large historical wildfires in
Portugal that occurred between 2003 and 2005. Understanding and
quantifying the sources of prediction error, or producing the best possi-
ble predictions, is beyond the scope of the work, as we focus on the rel-
ative improvements made by calibrating the fire modeling system.

2. Data and methods

2.1. Fire spread simulations

We selected seven very large wildfires that occurred in Portugal be-
tween 2003 and 2005. Each wildfire burned between ~13,700 ha and
40,000 ha and lasted for several days. These historical case studies
were above the 99th percentile of fire size distribution considering all
the wildfires that occurred between 1975 and 2013 in mainland
Portugal (Sá et al., 2017). The location, burned area perimeter, fire
name and respective acronym are displayed in S1 Fig. 1, along with
their characteristics shown in S1 Table 1. The burned area perimeters
of all case studies were extracted from the Landsat-derived Portuguese
fire atlas (Oliveira et al., 2012). The ignition locations, start and end date
of the case studies were defined using satellite active fire data (Benali
et al., 2016b).

Weused FARSITE to simulate thefire spread patterns of the case stud-
ies. FARSITE uses distinct models for surface fire spread (Rothermel,
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