Accepted Manuscript

Helium evidences for mantle degassing in the groundwater of Madeira Island – Portugal

Helena I.F. Amaral, Carla Midões, Rolf Kipfer

PII: S0883-2927(16)30478-4

DOI: 10.1016/j.apgeochem.2017.03.019

Reference: AG 3856

To appear in: Applied Geochemistry

Received Date: 12 November 2016

Accepted Date: 29 March 2017

Please cite this article as: Amaral, H.I.F., Midões, C., Kipfer, R., Helium evidences for mantle degassing in the groundwater of Madeira Island – Portugal, *Applied Geochemistry* (2017), doi: 10.1016/j.apgeochem.2017.03.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	HELIUM EVIDENCES FOR MANTLE DEGASSING IN THE GROUNDWATER OF
2	MADEIRA ISLAND – PORTUGAL
3	
4	AUTHORS AND AFFILIATIONS
5	Helena I.F. Amaral ^{1*} , Carla Midões ¹ and Rolf Kipfer ^{2, 3}
6	¹ LNEG: National Laboratory of Energy and Geology, Amadora, Portugal
7	² Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
8	³ ETHZ: Swiss Federal Institute of Technology of Zürich, Zürich, Switzerland
9	
10	*Corresponding author: hi.lenamaral@gmail.com
11	Previously at LNEG - National Laboratory for Energy and Geology of Portugal
12	Estrada da Portela, B ^o do Zambujal - Apartado 7586
13	2610-999 Amadora, Portugal
14	Phone: +351-21092/626, Fax: +351-214719018
15	
16	ABSTRACT
17	The Madeira Island is fed by an active hotspot, but there are no evidences of current volcanism and
18	geothermal activity or, of a heat source at depth, which probably justifies why only low temperature and
19	low TDS groundwater is found in Madeira. Nonetheless, Madeira is a relatively young island (≤ 7 Ma
20	old), and a connection to the upper mantle through geological conduits, is likely to occur. To investigate
21	whether such a connection exists, noble gases and stable isotopes were, so far as we know, for the first
22	time measured in groundwater samples of the main (basal) aquifer of Madeira Is.
23	Groundwater is the main supply of drinking water in Madeira Is., and the hydrogeology of the
24	island has been well characterized in previous studies. In this study, groundwater was generically divided
25	into 'cold' waters (< 20 °C, near the coast) and 'warm' waters (20-25 °C, central part of the island). This
26	division was based on field temperature, water chemistry and stable isotopic composition. Four 'hot'
27	waters (23-25 °C) showed partly distinct characteristics. A bubbling spring was also sampled. Very low
28	tritium values indicate groundwater recharged recently and/or mix with free-tritium waters. Groundwater
29	is fed by rain recharged during autumn as indicated by $\delta^{18}O$ and δ^2H signatures. During infiltration, the
30	waters dissolved soil CO ₂ that according to the back-calculated δ ¹³ C-CO ₂ compositions corresponds
31	mainly to CO ₂ of biogenic origin. Nonetheless, a mantle CO ₂ component cannot be excluded from
32	samples from the inner part of the island. The noblegas helium was the sole tracer indicating a deep gas
33	contribution to the groundwater. A strong mantle signal was detected in the 'hot' and bubbling waters, as
34	indicated by their He-Ra values of 8 (being Ra the atmospheric ³ He/ ⁴ He ratio), typical of the MORB.
35	Thus, even if the last volcanic eruption occurred ca. 0,006 Ma, degassing of the upper-mantle was
36	detected in the shallow cold waters of Madeira. The deep gas ascends without heat transport, through
37	dikes and faults that cross, mainly, the central part of the island.

Download English Version:

https://daneshyari.com/en/article/5752461

Download Persian Version:

https://daneshyari.com/article/5752461

<u>Daneshyari.com</u>