## **Accepted Manuscript**

OMI-measured SO<sub>2</sub> in a large-scale national energy industrial base and its effect on the capital city of Xinjiang, Northwest China

Jinxiang Wang, Jingyue Mo, Jixiang Li, Zaili Ling, Tao Huang, Yuan Zhao, Xiaodong Zhang, Xiaoxuan Mao, Hong Gao, Yanjie Shen, Jianmin Ma

PII: S1352-2310(17)30507-1

DOI: 10.1016/j.atmosenv.2017.08.002

Reference: AEA 15472

To appear in: Atmospheric Environment

Received Date: 7 April 2017
Revised Date: 28 July 2017
Accepted Date: 1 August 2017

Please cite this article as: Wang, J., Mo, J., Li, J., Ling, Z., Huang, T., Zhao, Y., Zhang, X., Mao, X., Gao, H., Shen, Y., Ma, J., OMI-measured SO<sub>2</sub> in a large-scale national energy industrial base and its effect on the capital city of Xinjiang, Northwest China, *Atmospheric Environment* (2017), doi: 10.1016/j.atmosenv.2017.08.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## ACCEPTED MANUSCRIPT

| 1  | OMI-measured $SO_2$ in a large-scale national energy industrial base and its effect                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | on the capital city of Xinjiang, Northwest China                                                                                                                      |
| 3  |                                                                                                                                                                       |
| 4  | Jinxiang Wang <sup>a</sup> , Jingyue Mo <sup>b</sup> , Jixiang Li <sup>b</sup> , Zaili Ling <sup>a</sup> , Tao Huang <sup>a</sup> , Yuan Zhao <sup>a</sup> , Xiaodong |
| 5  | Zhang <sup>a</sup> , Xiaoxuan Mao <sup>a</sup> , Hong Gao <sup>a</sup> , Yanjie Shen <sup>e</sup> , Jianmin Ma <sup>a, c, d,*</sup>                                   |
| 6  |                                                                                                                                                                       |
| 7  | <sup>a</sup> Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of                                                            |
| 8  | Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China                                                                                           |
| 9  | <sup>b</sup> College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China                                                                               |
| 10 | <sup>c</sup> Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking                                                              |
| 11 | University, Beijing, 100871, China                                                                                                                                    |
| 12 | <sup>d</sup> CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences,                                                                |
| 13 | Beijing 100101, China                                                                                                                                                 |
| 14 | <sup>e</sup> Hydrology Bureau, Yellow River Conservancy Commission of the Ministry of Water Resources,                                                                |
| 15 | Sanmenxia 472000, China                                                                                                                                               |
| 16 | HIGHLIGHTS                                                                                                                                                            |
| 17 | <ul> <li>OMI columnar SO<sub>2</sub> were used to assess the air quality in an energy industrial base.</li> </ul>                                                     |
| 18 | <ul> <li>SO<sub>2</sub> emissions from energy industrial base are much higher than nearby Urumqi city.</li> </ul>                                                     |
| 19 | <ul> <li>The energy industrial base markedly contributed to SO<sub>2</sub> contamination in Urumqi city.</li> </ul>                                                   |
| 20 | <ul> <li>Higher emission from energy industrial base offsets city's emission control efforts.</li> </ul>                                                              |
| 21 |                                                                                                                                                                       |
| 22 | A DOTED A CIT                                                                                                                                                         |
| 22 | ABSTRACT                                                                                                                                                              |
| 23 | Although considerable efforts have been made to improve air quality in Urumqi, the                                                                                    |
| 24 | capital of Xinjiang-Uyghur Autonomous Region in northwestern China and one of the                                                                                     |
| 25 | ten cities with worst air quality in China, this city is still experiencing heavy air                                                                                 |
| 26 | pollution during the wintertime. The satellite remote sensing of air quality using                                                                                    |
| 27 | Ozone Monitoring Instrument (OMI) measured data discerned an increasing trend of                                                                                      |
| 28 | the planetary boundary layer (PBL) columns of sulfur dioxide ( $SO_2$ ) in Midong                                                                                     |
| 29 | national petrochemical and coal chemical industry base from 2005 to 2016, located in                                                                                  |
| 30 | the northeast of Urumqi. The increasing trend of OMI columnar SO <sub>2</sub> in this area is in                                                                      |
| 31 | contrast to the widespread decreases of SO <sub>2</sub> emissions in eastern and southern China.                                                                      |

## Download English Version:

## https://daneshyari.com/en/article/5753060

Download Persian Version:

https://daneshyari.com/article/5753060

<u>Daneshyari.com</u>