Accepted Manuscript

Observations of particle extinction, PM_{2.5} mass concentration profile and flux in north China based on mobile lidar technique

Lihui Lv, Wenqing Liu, Tianshu Zhang, Zhenyi Chen, Yunsheng Dong, Guangqiang Fan, Yan Xiang, Yawei Yao, Nan Yang, Baolin Chu, Man Teng, Xiaowen Shu

PII: S1352-2310(17)30403-X

DOI: 10.1016/j.atmosenv.2017.06.022

Reference: AEA 15384

To appear in: Atmospheric Environment

Received Date: 23 February 2017

Revised Date: 5 June 2017

Accepted Date: 10 June 2017

Please cite this article as: Lv, L., Liu, W., Zhang, T., Chen, Z., Dong, Y., Fan, G., Xiang, Y., Yao, Y., Yang, N., Chu, B., Teng, M., Shu, X., Observations of particle extinction, PM_{2.5} mass concentration profile and flux in north China based on mobile lidar technique, *Atmospheric Environment* (2017), doi: 10.1016/j.atmosenv.2017.06.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Observations of particle extinction, PM _{2.5} mass concentration profile
2	and nux in north China based on mobile ildar technique
4	Lihui Lv ^{1,2} , Wenqing Liu ^{1,2} , Tianshu Zhang ¹ *, Zhenyi Chen ¹ , Yunsheng Dong ¹ ,
5	Guangqiang Fan ¹ , Yan Xiang ^{1,2} , Yawei Yao ³ , Nan Yang ³ , Baolin Chu ³ , Man
6	Teng ³ , and Xiaowen Shu ⁴
7	
8 9	¹ Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
10	² University of Science and Technology of China, Hefei, Anhui 230026, China
11 12	³ State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring Center, Beijing, 100012, China
13	⁴ Army Air Force Military Representative's Office in Beijing, Beijing, 100086, China
14	
15	
16	HIGHLIGHTS
17	Characteristics of the vertical distribution of fine particles in Beijing were observed.
18	Transport fluxes of Beijing were estimated based on a vehicle-based mobile lidar.
19	Southwest was an important regional transport pathway of Beijing.
20	
21	Abstract
21	
22	Fine particle with diameter <25 um (PM,) have important direct and indirect offects on
23 24	human life and activities. However, the studies of fine particle were limited by the lack of
25	monitoring data obtained with multiple fixed site sampling strategies. Mobile monitoring has
26	provided a means for broad measurement of fine particles. In this research, the potential use of
27	mobile lidar to map the distribution and transport of fine particles was discussed. The spatial and
28	temporal distributions of particle extinction, PM _{2.5} mass concentration and regional transport flux
29	of fine particle in the planetary boundary layer were investigated with the use of vehicle-based
30	mobile lidar and wind field data from north China. Case studies under different pollution levels in Design ware presented to evaluate the contribution of regional transport. A valuable based mobile
31	Beijing were presented to evaluate the contribution of regional transport. A ventile-based mobile
32 33	measurement route. Fixed point lidar and a particulate matter sampler were operated next to each
34	other at the University of Chinese Academy of Science (UCAS) in Beijing to determine the
35	relationship between the particle extinction coefficient and PM_{25} mass concentration. The
36	correlation coefficient (R^2) between the particle extinction coefficient and PM _{2.5} mass
37	concentration was found to be over 0.8 when relative humidity (RH) was less than 90%. A
38	mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used

mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used

^{*} Corresponding author. Tel.: +86 551 65593068

E-mail address: tszhang@aiofm.ac.cn

Download English Version:

https://daneshyari.com/en/article/5753136

Download Persian Version:

https://daneshyari.com/article/5753136

Daneshyari.com