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h i g h l i g h t s

� Uncertainty estimation is proposed in renormalization inversion technique.
� Evaluation with Fusion Field and MUST field datasets.
� The present confidence estimates are comparable with bootstrap estimates.
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a b s t r a c t

The study proposes a methodology in a recent inversion technique, called as Renormalization, to char-
acterize the uncertainties in the reconstruction of a point source. The estimates are derived for
measuring the inversion error, the degree of model fit towards measurements (model determination
coefficient) and the confidence intervals for the retrieved point source parameters (mainly, location and
strength). The inversion error is reflected through an angular estimate which measures the deviation
between the measured and predicted concentrations. The uncertainty estimation methodology is eval-
uated for point source reconstruction studies, using real measurements from two field experiments,
known as Fusion Field Trials 2007 (FFT07) in flat terrain and Mock Urban Setting Test (MUST) in urban
like terrain. In FFT07 and MUST experiments, the point source location is retrieved with an average
Euclidean distance of 22 m and 15 m respectively. The source strength is retrieved, on average, within a
factor of 1.5 in both the datasets. The inversion error is observed as 24o and 21o in FFT07 and MUST
experiment, respectively. The 95% confidence interval estimates show that the uncertainty in the
retrieved parameters is relatively large in approximately 50% FFT07 and 30% MUST trials in spite of their
closeness towards true source parameters. For a comparative analysis, the interval estimates are also
compared with a more general method of uncertainty estimation, Residual Bootstrap Sampling. In most
of the trials, we observed that the intervals estimates with the present method are comparable (within
10e20% variations) to bootstrap estimates. The proposed methodology provides near accurate and
computationally efficient uncertainty estimates in comparison to the methods based on Hessian and
sampling procedures.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Inversion of atmospheric trace gases has been an active research
topic in inverse modelling and data assimilation. A particular in-
terest for emergency response applications is the estimation of
origin and mass of the unknown releases, occurred accidentally or
deliberately into the atmosphere, from their limited measured

concentrations. This is an ill-posed inverse problem often posed in
a discretized space as a non-parametric or parametric estimation
problem depending on the nature of the release. In particular,
retrieval of a point type source is a parametric estimation problem
which refers to the estimation of its location, strength, height and
time of the release. The solution to the inverse problem is derived
as a conditional estimate, called a posteriori, under an optimal
integration of a priori information on release parameters and a
misfit (or likelihood) function. The conditional estimate can be a
functional form of the source parameters. The shape or distribution
of the conditional estimate represents a limited amount of* Corresponding author.
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information obtained from the data and gives the full picture of
uncertainty in the parameters (Duijndam, 1988). Thus, a primary
uncertainty in the source reconstruction can be characterized from
the resolution analysis of the conditional estimate. The resolution is
referred to the state of information gained by the measurements
over a priori information. The shape of the distribution around the
maximum determines how well the estimate is resolved from the
information available. The estimation is said to be well resolved
when the conditional estimate is sharply peaked. However, a per-
fect resolution for the estimate can not be achieved in reality since
measurements are limited and noisy (Singh et al., 2015). Therefore,
an analysis of uncertainties in the estimation process is considered
important.

In recent years, inversion techniques are evolved within the
framework of Bayesian inference and optimization to provide an
optimal and stable solution in source retrieval problems. The true
statistics of the source parameters are not known and can not be
determined practically since only few realization of the measure-
ments are available in a scenario. Thus, alternative approaches are
required to determine uncertainty in the retrieved parameters.
More commonly, the standard deviation or standard error of the
estimate is derived (or considered as an asymptotic estimate) to
approximate the uncertainty in the estimated parameter. For
instance, in Bayesian framework coupledwithMarkov ChainMonte
Carlo sampling, the mean estimate of the retrieved parameters
along with the posterior uncertainties are directly derivable from
the sampling statistics. However, the sampling process is tedious
and computationally expensive. The uncertainty measures of the
parameters are often computed in the form of standard deviations,
when the features of the inverse solution are approximately
Gaussian. The Bayesian framework requires a priori error statistics
related to the measurement errors and background errors which
are not known accurately in practice (Ganesan et al., 2014). These
statistics are often hypothesized based on expert's opinion and, the
source retrieval and uncertainty estimates are sensitive to the
prescribed error statistics due to a limited set of measurements
(Desroziers and Ivanov, 2001; Desroziers et al., 2005; Winiarek
et al., 2012; Berchet et al., 2013, 2015).

Contrary to sampling framework, an estimation of posterior
uncertainties is not straightforward in the optimization based
techniques. To analyze uncertainties, themisfit/cost function can be
inspected in the directions along which the parameters are poorly
resolved or, simply, an overall uncertainty bound can be deter-
mined on the parameters. A common approach is the utilization of
Fisher information matrix which measures the amount of infor-
mation given by an observable randomvariable about the unknown
parameters. Under mild regularity conditions, the information
matrix can be obtained as negative of the expected value of the
Hessian matrix (matrix of second order derivatives) of the log-
likelihood/cost function (Thacker, 1989). The second order deriva-
tive indicates the extent towhich the cost function is peaked or flat.
From Cramer-Rao inequality, inverse of the Fisher information
matrix provides a lower bound for the error covariance of any
unbiased estimator of the true source parameters. Thus, the inverse
of the Hessian matrix provides an approximation of the covariance
matrix of the estimated parameters for Gaussian error assumptions
in non-linear models. However, such estimation requires the de-
rivative information and are subjected to the numerical approxi-
mations of derivatives and domain discretization.

Besides these approaches, there exists an alternative Monte
Carlo resampling method, called Bootstrap, which can be applied
based on the observed data to measure the statistical properties of
the estimate from the sampled distribution (Efron, 1979). Bootstrap
is useful when the theoretical distribution of a statistic of interest is
complex or unknown. Since the bootstrapping procedure is

distribution-independent, it provides an indirect method to assess
the properties of the distribution underlying the sample and the
parameters of interest that are derived from this distribution.
Bootstrap is a straightforward way to (i) control and check the
stability of the results and (ii) derive estimates of standard errors
and confidence intervals for estimators of complex parameters of
the distribution. Although for most problems, it is impossible to
know the true confidence interval, bootstrap is asymptotically
more accurate than the standard intervals obtained using sample
variance and assumptions of normality. However, the methods of
standard error or asymptotic variance are computationally faster
than bootstrapping. When the error statistics are provided
correctly, the standard error estimates and the bootstrapping error
estimates may be comparable.

The present study explores an analysis of uncertainty in a recent
inversion technique, called Renormalization (Issartel et al., 2007),
which has shown its applicability to retrieve both the areal (Issartel
et al., 2007) as well as point source emissions (Issartel, 2005;
Sharan et al., 2009, 2012). The technique is advantageous in the
sense of not utilizing any hypothetical assumptions regarding error
and background statistics. A priori information about the unknown
emissions apparent to the monitoring network is derived in the
form of weights according to the geometry of the monitoring
network. Turbelin et al. (2014); Singh et al. (2015) have shown the
optimality of the resolution features of the reconstructed source.
However, the inversion technique lacks an inherent methodology
to derive uncertainty in the retrieved source parameters.

As a further advancement in the inversion technique, the
objective here is to propose a methodology to derive uncertainty in
the retrieved parameters along with their estimation. In this study,
the estimates are proposed for accounting the inversion error and
uncertainty in the resolution features. The quality of the recon-
structed parameters are assessed in terms of their ability to
describe variability in the measurements. An asymptotic estimate
of a posteriori standard error in the retrieved source estimate is
approximated. Further, the interval estimates are determined for
the retrieved point source parameters which describe the lower
and upper bound of variations in the parameters due to inherent
uncertainty. The uncertainty estimation methodology is illustrated
here using real diffusion experiments, namely Fusion Field Trials
2007 (FFT07) (Storwald, 2007; Singh et al., 2015) and Mock Urban
Setting Test (Biltoft, 2001; Kumar et al., 2015b) in flat and
obstructed terrain, respectively. The accuracy of the uncertainty
estimates is compared with the bootstrap methods.

2. Inversion framework

The inversion framework relies on processing the measured
atmospheric concentrations in order to infer the origin and flux of
the unknown tracer emissions. This is facilitated by the use of an
atmospheric transport and dispersion model which can relate in-
formation in the model space to the measurements. Typically,
limited measurements are sampled at discrete locations and thus,
the physical problem needs to be formulated in a discretized space.
We mention that the inversion framework is discussed here for a
continuous ground level emission and thus, vertical and time di-
mensions will be ignored in the formulations. However, the tech-
nique is generalizable for elevated and time dependent releases as
well (Issartel et al., 2007; Sharan et al., 2012). Assuming that the
model is linear, the source-receptor relationship can be posed in a
discretized space (composed of N cells) as,

m ¼ Asþ ε (1)

in which m2ℝm is a vector of m concentration measurements
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