Accepted Manuscript

A process-based emission model of volatile organic compounds from silage sources on farms

H.F. Bonifacio, C.A. Rotz, S.D. Hafner, F. Montes, M. Cohen, F.M. Mitloehner

PII: S1352-2310(16)30992-X

DOI: 10.1016/j.atmosenv.2016.12.024

Reference: AEA 15086

To appear in: Atmospheric Environment

- Received Date: 13 September 2016
- Revised Date: 8 December 2016
- Accepted Date: 10 December 2016

Please cite this article as: Bonifacio, H.F., Rotz, C.A., Hafner, S.D., Montes, F., Cohen, M., Mitloehner, F.M., A process-based emission model of volatile organic compounds from silage sources on farms, *Atmospheric Environment* (2017), doi: 10.1016/j.atmosenv.2016.12.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	A process-based emission model of volatile organic compounds from silage sources on
2	farms
3 4	H.F. Bonifacio ^{a,1} , C.A. Rotz ^{a,*} , S.D. Hafner ^b , F. Montes ^c , M. Cohen ^d , F.M. Mitloehner ^d
5	^a Pasture Systems and Watershed Management Research Unit, USDA Agricultural Research
6	Service, University Park, PA, USA
7	^b Department of Chemical Engineering, Biotechnology and Environmental Technology,
8	University of Southern Denmark, Odense, Denmark
9	^c Plant Science Department, The Pennsylvania State University, University Park, PA USA
10	^d Department of Animal Science, University of California, Davis, CA, USA
11	* Corresponding author. E-mail address: Al.Rotz@ars.usda.gov.
12	¹ Present address: Air Quality Program, Northwest Regional Office, Pennsylvania Department of
13	Environmental Protection, Meadville, PA, USA
14	
15	ABSTRACT
16	Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor
17	in the formation of tropospheric ozone. Because of the challenges associated with direct
18	measurements, process-based modeling is another approach for estimating emissions of air
19	pollutants from sources such as those from dairy farms. A process-based model for predicting
20	VOC emissions from silage was developed and incorporated into the Integrated Farm System
21	Model (IFSM, v. 4.3), a whole-farm simulation of crop, dairy, and beef production systems. The
22	performance of the IFSM silage VOC emission model was evaluated using ethanol and methanol
23	emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations

Download English Version:

https://daneshyari.com/en/article/5753391

Download Persian Version:

https://daneshyari.com/article/5753391

Daneshyari.com