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HIGHLIGHTS

o Slice sampling is introduced to solve Bayesian source estimation problems.

o Approximate Bayesian Computation method is applied to source estimation problems.
o Five likelihood functions are evaluated using field experiment data sets.

o Six distance measures are evaluated using field experiment data sets.

e Nemenyi test is used to evaluate all the methods over multiple data sets.
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Source term estimation for atmospheric dispersion deals with estimation of the emission strength and
location of an emitting source using all available information, including site description, meteorological
data, concentration observations and prior information. In this paper, Bayesian methods for source term
estimation are evaluated using Prairie Grass field observations. The methods include those that require
the specification of the likelihood function and those which are likelihood free, also known as approx-
imate Bayesian computation (ABC) methods. The performances of five different likelihood functions in
the former and six different distance measures in the latter case are compared for each component of the
source parameter vector based on Nemenyi test over all the 68 data sets available in the Prairie Grass
field experiment. Several likelihood functions and distance measures are introduced to source term
estimation for the first time. Also, ABC method is improved in many aspects. Results show that
discrepancy measures which refer to likelihood functions and distance measures collectively have sig-
nificant influence on source estimation. There is no single winning algorithm, but these methods can be
used collectively to provide more robust estimates.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

outcome of STE can help enhance the situation assessment as well
as act as important input data for atmospheric dispersion models to

Source term estimation (STE) for atmospheric dispersion refers
to the process of determining the emission strength and location by
limited information including site description, meteorological data,
remotely measured concentrations and prior information about the
source term (Singh et al., 2015). When the release of hazardous
materials occurs due to industrial accidents or terrorist attacks, the
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track and forecast the future atmospheric transport of hazardous
components.

The current state of STE is reviewed in Singh et al. (2015) and
Hutchinson et al. (2017). We only provide a necessary background
here by categorizing STE methods into direct, optimization and
probabilistic methods and introducing several previous studies
related to the topic of this paper.

In direct methods, the dispersion model is run only once in a
reverse direction to determine the unknown source parameters
within Eulerian or Lagrangian description (Bady et al., 2009; Flesch
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et al., 2004).

The basic idea of optimization methods is to find the source
parameters which minimize the carefully selected cost function
which describes the discrepancy between the output of forward
dispersion models and the measured concentration at all the
available sensor locations (Zheng and Chen, 2011). Thomson et al.
(2007) used Gaussian plume dispersion model and simulated
annealing algorithm to locate a gas source, where the robustness of
three different cost functions against various forms of noises was
investigated. Ma et al. (2013) compared the performances of several
optimization techniques with Gaussian plume model and different
cost functions. However, STE problems are usually accompanied
with a variety of uncertainty, including uncertainty in sensor ob-
servations, meteorological data, the choice of forward dispersion
models, as well as uncertainty caused by assumptions in source
inversion algorithms (Rao, 2007; Wang et al., 2015). To analyze the
uncertainty of STE results under the framework of optimization
methods, Singh and Rani (2014) approximated the variance of the
source parameters by using the Hessian of the cost function.

The Bayesian probabilistic methods, on the other hand, provide
a more natural means for incorporating all the uncertainty by
estimating the posterior distribution of the source parameters
(Keats et al., 2007; Yee, 2012). Senocak et al. (2008) modified the
log-normal likelihood function by considering both zero and non-
zero concentration measurements with Markov chain Monte
Carlo (MCMC) sampling and Gaussian plume model. Rajaona et al.
(2015) tackled this Bayesian inference problem by developing an
Adaptive Multiple Importance Sampling method with normal
likelihood. Lucas et al. (2016) applied a Bayesian inverse technique
to quantify the effects of inflow uncertainty on tracer transport and
source estimation in urban environment, also under normal like-
lihood assumption. Ristic et al. (2016) localized a source of haz-
ardous release using binary measurements, where the likelihood
function was determined based on Poisson and Bernoulli distri-
bution. Zhang et al. (2014) applied the ensemble Kalman filter
method in large scale STE problems like nuclear accident atmo-
spheric dispersion, where the underlying assumption is a normal
likelihood function. Ristic et al. (2015a) proposed a multiple-model
likelihood-free approximate Bayesian computation (ABC) method
for STE, which simultaneously used a set of candidate forward
dispersion models to determine the source, where the posterior
estimate using the Canberra distance is significantly worse than
that using the squared Euclidian distance. Kopka et al. (2016)
applied an ABC method to the estimation of mobile sources using
Fractional Bias as the distance metric to measure the discrepancy
between predicted concentrations and observed ones.

In Bayesian methods, the likelihood functions play a role similar
to that of cost functions in optimization methods, which we
referred to as Bayesian likelihood methods below to avoid confu-
sion with ABC. In ABC methods, likelihood functions are replaced by
distance measures, which have similar form to cost functions in
optimization methods. All of these three can be viewed as some
kind of discrepancy measure, either deterministic or probabilistic.
The assignment of discrepancy measure is very important in indi-
rect STE methods. As stated above, many researchers have
compared different cost functions, and ABC is proposed to avoid
specifying likelihood functions and their parameters explicitly.

However, this discrepancy always exists and is difficult to be
modelled in a precise way because of three major reasons. The first
is the randomness and uncertainties contained in turbulent
dispersion processes (Rao, 2005). The second is that atmospheric
models are imperfect and contribute a modelling error. The third is
the noise contained in sensor measurements. Due to these three
difficulties, it is hard to justify any discrepancy measure in a
theoretical way. In this paper, different discrepancy measures in

Bayesian likelihood methods and ABC methods are evaluated
empirically using the Prairie Grass field experiment (Barad, 1958).
The Nemenyi test (Nemenyi, 1963) is adopted to compare the
performance of these different discrepancy measures. Also, effi-
cient sampling methods for both Bayesian likelihood methods and
ABC methods are incorporated.

2. Methodology
2.1. Bayesian likelihood method

In Bayesian paradigm, unknown parameters are treated as
random variables. Let # denote the unknown parameter vector (will
be specified in Section 3.1) which may contain source location,
emission rate, wind speed, wind direction, etc. Let z = [z}, 2, ..., ;]
denote the observations of n gas sensors. According to the Bayes'
theorem, the posterior probability of the parameter vector @ is
given by:

p(z|0)p(0)

piojz) = P2

(1)

where p(z|0) is the likelihood function, p(#) is the prior probability
which reflects the prior knowledge about the parameter vector 6,
p(z) is the marginal probability of the observations and is computed
as the integral of p(z|@)p(0) over 6.

2.1.1. Likelihood functions

The assignment of prior probability is very problem-specific and
will be given in Section 3.2. The likelihood function is expected to
describe the information about the measurement noise and
modelling uncertainties (Kaipio and Somersalo, 2006). Two choices
of likelihood function are frequently used in the STE literature:
normal distribution (Keats et al., 2007; Guo et al., 2009; Humphries
etal.,, 2012; Hosseini and Stockie, 2016) and log-normal distribution
(Goyal et al., 2005; Senocak et al., 2008; Wade and Senocak, 2013).
The parameters of the likelihood function may be treated in
different ways, ranging from assigning an empirical value, to
including them into the augmented parameter vector to be esti-
mated jointly with the source term (Keats et al., 2009; Wade and
Senocak, 2013).

Models based on normal distribution are sensitive to outliers,
and the influence of outliers can be reduced by using long-tailed
likelihood distributions such as the family of t distribution
(Gelman et al., 2013). The t family of distributions t,(u, 1) is deter-
mined by three parameters: location u, scale A and degrees of
freedom v. When » equals 1, t distribution is equivalent to Cauchy
distribution. When v approaches positive infinity, t distribution
approaches normal distribution. In response to log-normal likeli-
hood, a super-heavy tail log-cauchy distribution is also evaluated.
Assuming that the sensor observations are independent condi-
tioned on parameter vector 6, the likelihood function described by
five different distributions are as follows:

e normal distribution (Norm):
p(l9) = ][ p(zil6) = (5-)° exp{ D0 —zilz} (2)
i=1 i=1

where F;(6) is the prediction of the forward dispersion model at
sensor i, 7 is the precision parameter.

e log-normal distribution (Ln-Norm):
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