Accepted Manuscript

Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India

COURS - PREPIATION AGRICUL MARATION WITH MODIFICATION AT THE MODIF

Preeti Gunwani, Manju Mohan

PII: S0169-8095(17)30415-5

DOI: doi: 10.1016/j.atmosres.2017.04.026

Reference: ATMOS 3939

To appear in: Atmospheric Research

Received date: 10 November 2015 Revised date: 17 January 2017 Accepted date: 12 April 2017

Please cite this article as: Preeti Gunwani, Manju Mohan, Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Atmos(2016), doi: 10.1016/j.atmosres.2017.04.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India

Preeti Gunwani and Manju Mohan

Centre for Atmospheric Sciences Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016

*Corresponding Author: Manju Mohan
Email: mmohan66@gmail.com, mmanju@cas.iitd.ernet.in
Phone: +91-11-26591313

Abstract

In the present work sensitivity of Weather Research Forecasting (WRF) Model has been carried out using five Planetary Boundary Layer (PBL) schemes – Yonsei University Scheme (YSU), Mellor-Yamada-Janjić scheme (MYJ), Aymmetric Convective Model version 2 (ACM2), Quasi Normal Scale Elimination scheme (QNSE), Mellor-Yamada-Nakanishi-Niino scheme (MYNN) in different climatic zones over India namely Tropical, Temperate and Arid for surface meteorological parameters, upper air variables and planetary boundary layer height during summer and winter season. The model outputs have been compared with observations through standard statistical measures. The aim is to study the relative performance of these schemes, selecting the best option climatic zone-wise and thereby minimizing uncertainty in model predictions. WRF model performance evaluation shows better agreement for temperature and relative humidity compared to wind speed. Overall for India, ACM2, QNSE show good performance for temperature and relative humidity whereas ACM2, MYNN show better performance for wind speed though these may vary for different climatic zones. Geopotential height and wind over 850hPa is well simulated by ACM2 and MYNN over India. For PBL height ACM2, MYNN and MYJ works best for Chennai, New Delhi and Kolkata respectively during summer period. However, for winter period MYJ works best for Chennai while, QNSE works best for New Delhi and Kolkata. Considering all meteorological parameters together, it is seen that for arid zone ACM2, QNSE and MYJ schemes work reasonably well. For temperate zone, ACM2, QNSE and MYNN schemes

Download English Version:

https://daneshyari.com/en/article/5753609

Download Persian Version:

https://daneshyari.com/article/5753609

Daneshyari.com