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As one of themost populous and developed provinces in China, Guangdong province (GD) has been experiencing
regional haze problems. Identification of source contributions to ambient PM2.5 level is essential for developing
effective control strategies. In this study, using the most up-to-date emission inventory and validated numerical
model, source contributions to ambient PM2.5 from eight emission source sectors (agriculture, biogenic, dust, in-
dustry, power plant, residential, mobile and others) in GD in 2012 were quantified. Results showed that mobile
sources are the dominant contributors to the ambient PM2.5 (24.0%) in the Pearl River Delta (PRD) region, the
central and most developed area of GD, while industry sources are the major contributors (21.5% ~ 23.6%) to
those in the Northeastern GD (NE-GD) region and the Southwestern GD (SW-GD) region. Althoughmany indus-
tries have been encouraged to move from the central GD to peripheral areas such as NE-GD and SW-GD, their
emissions still have an important impact on the PM2.5 level in the PRD. In addition, agriculture sources are re-
sponsible for 17.5% to ambient PM2.5 in GD, indicating the importance of regulations on agricultural activities,
which has been largely ignored in the current air quality management. Super-regional contributions were also
quantified and their contributions to the ambient PM2.5 in GD are significant with notable seasonal differences.
But they might be overestimated and further studies are needed to better quantify the transport impacts.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

As one of the most populous and developed provinces in China,
Guangdong province (GD) has been experiencing regional haze prob-
lems (Zheng et al., 2010; Huang et al., 2012; Lai et al., 2016). Thanks
to the continuous emissions control efforts implemented in the past
few years, the number of haze days and ambient PM2.5 concentrations
were in declining trends (Fu et al., 2016; MEPC, 2016), but PM2.5 con-
centrations in some cities were still high and frequently violated the
new air quality standard (GDEMC, EPDHK, EPBMC,MGBMC, 2015). Pre-
vious reduction effortsmainly targeted on power plants, mobile sources
and industrial sources by the way of command-control. Continuous re-
ductions on these sources are still effective for further control on ambi-
ent PM2.5, but the cost might increase as well. Other sources, such as
NH3 emissions and cooking emissions, also pose an impact on PM2.5 for-
mations. However, they did not receivemuch attention in previous con-
trol strategies. To further reduce ambient PM2.5 concentrations, control
strategies onmore comprehensive sources should be considered, thus a
full understanding of the relationship between ambient PM2.5 and emis-
sion sources is needed.

In general, such evidence-based control strategies are based on
source apportionment that quantifies source impacts on ambient
pollution and prioritizes emission control plans. Two source appor-
tionment methods are commonly used, including receptor model-
ing methods and source-based numerical models. Receptor
models, e.g. Positive Matrix Factorization (PMF) (Paatero and
Tapper, 1994) and Chemical Mass Balance (CMB) (Watson et al.,
1984), quantify the relationship between receptors and sources
based on measurements. However, these methods cannot distin-
guish regional or local contributions that play important roles in de-
veloping PM2.5 control strategies (Yuan et al., 2006). In addition,
receptor models use a fixed profile for secondary sources, which
might not be in line with the actual case (Habre et al., 2011). The
spatial coverage of receptor models is also limited to the locations
where samples are collected. On the contrary, numerical models,
that simulate dispersion, formation, transport and fate of atmo-
spheric pollutants, have a larger spatial coverage and the ability to
quantify transport impacts. Thus, they have been gradually recog-
nized as useful tools for air quality planning in term of PM2.5 con-
trols. For instance, Wang et al. (2014b) studied PM2.5 control
policies in Shanghai, China by using the Particulate Source Appor-
tionment Technology (PSAT) embedded in the Comprehensive Air
Quality Model with Extensions (CAMx).
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Previous source apportionment studies of ambient PM2.5 based on
air quality models mainly focused on the Pearl River Delta (PRD) region
(Guo et al., 2011; Wu et al., 2013), one of the most densely urbanized
areas in GD, other than the whole GD. Examining observations in the
GD, ambient PM concentrations in the PRD and those outside the PRD
showed different trends. In the PRD, trends of ambient PM concentra-
tions in recent years gradually declined, while those outside the PRD re-
main unchanged or even slightly increased (GDEP, 2014). This might be
attributed to two reasons. One is the implementation of the policies of
“vacate the cage and change birds” (in Chinese Teng Long Huan Niao)
initiated by the Guangdong provincial government in 2008 (Li&Fung,
2008; Yang, 2012). Many PRD firms specializing into the so-called
low-tech industries are entitled as “birds” that have been relocated out-
side the PRD. Fig. S1 in the supporting information (SI) shows the spatial
map of government-designated industrial relocation in Guangdong
province. Another is that previous control strategies mainly focused
on sources in the PRD region, while those outside the PRD region re-
ceived less attention. The economic restructuring and the increasing
trend of ambient PM2.5 concentrations outside the PRD raise several in-
teresting questions: Where do ambient PM2.5 concentrations outside
the PRD come from?Howmuchdo emissions outside the PRD region af-
fect ambient PM2.5 concentrations in the PRD region? How much do
super-regional sources contribute to PM2.5 in GD and PRD?Understand-
ing the interaction of emissions within and outside the PRD region is
beneficial to formulate effective control strategies, and underline the
need of a comprehensive source apportionment study across the entire
GD region.

In this study, our goals are to quantify seasonal source contributions
of ambient PM2.5 in different areas of GD in 2012 by using the PSAT
module embedded in CAMx (ENVIRON, 2011), coupled with a 2012-
based highly-resolved emission inventory for the entireGD. Interactions
between PRD and the outside PRD area were revealed as well. We also
discussed the regional transport and implications for PM2.5 control
strategies in GD.

2. Methodology and data source

2.1. Modeling system

CAMx (v5.4), a photochemical dispersionmodel based on the frame-
work of “one atmosphere”, in combination with the Weather Research
and Forecasting (WRF) model (Skamarock et al., 2008) and the Sparse
Matrix Operator Kernel Emissions processor for the PRD region
(SMOKE-PRD, derived from SMOKEv3.5) (Wang et al., 2011b), was
used for this PM2.5 source apportionment study in GD.

The Operational Global Analysis data was selected from National
Centers for Environmental Prediction (NCEP, http://rda.ucar.edu/
datasets/ds083.2/). In termof physical options, Rapid Radioactive Trans-
fer Model (RRTM), Dudhia scheme, WRF Single-Moment 6-classes
scheme and Kain-Fritsch scheme were set up as longwave radiation
scheme, shortwave radiation,microphysics and cumulus parameteriza-
tion, respectively. The CB05 and RADM were used as the gas-phase
chemistry and aqueous-phase chemistry mechanism in CAMx,
respectively. The inorganic aerosol thermodynamics/partitioning
(ISORROPIA) and secondary organic aerosol formation/partitioning
(SOAP)were selected as aerosolmodules in CAMx. TheWRFhad 26 ver-
tical layers and CAMx employed 18 of them. The January, April, August
and December in 2012 were selected to represent the typical seasonal
patterns of winter, spring, summer, and autumn. In each period, a spin
up period of 3 dwas used tominimize the influence of initial conditions.

Themodel systemhas two nested domains based on a Lambert-Con-
formal projection, with resolutions of 27 km × 27 km and 9 km × 9 km
respectively, as shown in Fig. S2 of the SI. The coarse domain (D1)
covers most parts of East Asia, Southeast Asia and parts of the Pacific
Ocean. The domain covers major meteorological fields affecting GD
and provides a reasonable boundary condition for simulation. The fine

domain (D2) is the target domain in this study, which encompasses
the entire GD region.

2.2. Emission inventory

2.2.1. Anthropogenic emission inventory
A high spatiotemporal resolution air pollutant emission inventory in

GD was adopted. The spatial distributions are shown in Fig. S4 of the SI.
Compiled with the latest domestic emission factors and local activity
data, this inventory includes nine types of pollutants (SO2, NOX, CO,
PM10, PM2.5, BC, OC, VOCs and NH3) and covers power plant, residential
combustion, non-roadmobile, industrial process, storage, biomass com-
bustion, industrial combustion, on-road mobile, dust, solvent use, agri-
culture and other anthropogenic sources. To filling the data gap in the
area outside GD, the Multi-resolution Emission Inventory for China
(MEIC) (Liu et al., 2015) and the Regional Emission inventory in Asia
(REAS) (Ohara et al., 2007) were used for the area outside GD in China
and the area outside China in D1, respectively.

2.2.2. Biogenic emission inventory
In this study, biogenic VOCs emissions and sea saltwere classified to-

gether as biogenic sources. Biogenic VOCs emissions were estimated
using the Model of Emission of Gases and Aerosols from Nature
(MEGAN v2.04) driven by meteorological fields, plant functional type,
leaf area index (LAI) and emission factors of VOCs species (Guenther
et al., 2012). The plant functional type input files for MEGAN are based
on the Multi-source Integrated Chinese Land (MICL), with the resolu-
tion of 1 km (Ran et al., 2012). For the LAI input, global gridded LAI
data of with the resolution of 30 s fromNational Center for Atmospheric
Research (NCAR, http://cdp.ucar.edu/) was applied. Biogenic VOCs
emission factors were provided by MEGAN official website (http://acd.
ucar.edu/~guenther/MEGAN/MEGAN.htm). Hourly gridded sea salt
emissions were estimated by a sea salt emission program (seasalt
v3.1, http://www.camx.com).

2.3. Emission processing

The SMOKE-PRD emission processing model was used to generate
emission input files for CAMx (Wang et al., 2011b). Spatial, temporal
and chemical profiles in SMOKE-PRD were updated to cover the entire
GD using the most up-to-date information (Zheng et al., 2013; Huang
et al., 2015). The MEIC and REAS emission inventories were processed
in SMOKE-PRD as well. To rescale and combine these two emission in-
ventories (with spatial resolution of 0.25° and temporal resolution of
1-month) into the model system (with spatial resolution of 9 km and
temporal resolution of 1-h), national population data, road network
data, landuse distribution data (as detailed in Table S1 of the SI) and
local temporal profiles in SMOKE-PRD were adopted (Zheng et al.,
2009; Wang et al., 2011b; Huang et al., 2015).

2.4. Observation data

PM2.5 and PM10 observations at twelve monitoring sites in the PRD
Regional Air Quality Monitoring Network (RAQMN) were employed to
evaluate the performance of PM2.5 and PM10 simulations (Zhong et al.,
2013), as shown in Fig. S12 of SI. All measurements of pollutant concen-
trations in RAQMN stations were subject to strict QA/QC procedures.
Additionally, 24-h averaged concentrations of NH4

+, SO4
2−, NO3

−, OC
and ECmeasured at four sites in the PRD regionwere employed to eval-
uate the simulation of PM2.5 compositions (Wang et al., 2015). The
Mean Fractional Bias (MFB), Mean Fractional Errors (MFE), Normalized
Mean Bias (NMB), Normalized Mean Error (NME) and Mean Bias (MB)
were used asmodel performance statistical metrics in this study, as rec-
ommended by U.S. EPA (U.S.EPA, 2007).
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