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Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolv-
ing model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed
that the decorrelation length L, varies in the vertical dimension, with larger L, occurring in convective clouds
and smaller L, in cirrus clouds. A new parameterization of L, is proposed that takes into account such varying
features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e.,
Keywords: the peak of bias is respectively reduced by 8 W m~2 for SWCF and 2 W m~? for LWCF in comparison with Le,, =
Horizontal inhomogeneity 1km.

Topic: The role of L., in modulating CRFs is twofold. On the one hand, larger L., tends to increase the standard deviation
Vertical alignment of optical depth o, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimen-
Decorrelation length sion, thereby broadening the probability distribution. On the other hand, larger o; causes a decrease in the solar
Cloud radiative forcing albedo and thermal emissivity, as implied in their convex functions on 7. As a result, increasing (decreasing)
Stochastic ICA approach Lewleads to decreased (increased) CRFs, as revealed by comparisons among L, = 0, L, = 1 km andL,, = <. It
also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representa-
tion of o in the vertical dimension yields an improved simulation of radiative heating. Although the importance
of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on

CREFs, it still has enough of an effect on modulating the cloud radiative transfer process.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate parameterizations of clouds and their radiative properties
are critical if numerical models are to produce realistic simulations of
current climate or believable predictions of the future. Although this
topic has received increased attention in recent decades (Lohmann et
al., 1999; Bogenschutz and Krueger, 2013; Kuell and Bott, 2014), cloud
representation in general circulation models (GCMs) is still in its infancy
and contributes to one of the largest uncertainties in climate modeling
(Bony and Dufresne, 2005). Apart from challenges in fractional cloudi-
ness parameterization (Tompkins, 2002; Wang et al., 2015) and cloud
cover overlap treatment (Wang et al.,, 2016), cloud representation is
complicated by cloud hydrometeor inhomogeneity and associated ver-
tical alignment.

Traditionally, GCMs represent clouds using grid-box means of a var-
iable such as cloud liquid or ice water content (Zhang et al., 2013); how-
ever, this is far from realistic, as observed clouds exhibit dramatic
variability at spatial scales smaller than the GCM grid (Tompkins,
2002). Remarkable errors can therefore occur in a series of physical
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processes, i.e., cloud autoconversion and radiative transfer (Pomroy
and Illingworth, 2000; Larson et al., 2005). For instance, Cahalan et al.
(1994a) found that the homogeneous assumption often yields overesti-
mations in both shortwave and longwave cloud radiative forcings
(CRFs). Pomroy and Illingworth (2000) obtained similar results and
found the overestimation is essentially due to the non-linear relation-
ship between cloud optical depth and solar albedo/thermal emissivity.
There have been several attempts to remedy such biases. The simplest
of these is to artificially scale down cloud optical depth. Cahalan et al.
(1994a) suggested using a scaling factor of 0.7 based on maritime stra-
tocumulus; however, they acknowledged the optimum value would
vary in terms of time and location. Gu and Liou (2006) found that
using a location-dependent inhomogeneity factor improved the global
mean planetary albedo by 4%. Furthermore, Hill et al. (2012) proposed
a parameterization of inhomogeneity that is suitable for inclusion in
GCMs and obtained encouraging results. While the introduced inhomo-
geneity factor is beneficial in improving radiative budget simulations, it
brings limited success in other aspects, i.e., radiative heating.

Another approach is the so-called stochastic independent column
approximation (ICA), which generates subgrid-scale columns and al-
lows each subcolumn to calculate radiative transfer independently
(Cahalan et al., 1994b; Barker et al., 1999). The accuracy of this method
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depends on how closely the generated subcolumns resemble those in
reality, in particular the vertical correlation relationship. Contrary to
the scaling approach above, this method aims to resolve cloud geometry
in a direct manner. The algorithm used to generate vertical correlation
profiles is akin to that in cloud cover overlap but with a different
decorrelation length L, (Raisanen et al., 2004). Hogan and Illingworth
(2003) found Ly typically varies between 0.5 and 2 km for a domain
range of 2 to 300 km. Oreopoulos et al. (2012) fixed L.yat 1 km and ex-
amined its impacts on radiative budgets in GEOS-5 (Goddard Earth Ob-
serving System Model, Version 5). These studies neglected the varying
feature of L., in the vertical dimension; however, this was at the cost
of accuracy, as will be shown later. The goal of this study was thus to
propose a new parameterization of L, that accounts for vertically vary-
ing characteristics and to compare it with previous parameterizations.
This study, targeting cloud condensate vertical alignment, is a follow
up to Wang et al. (2016), which focused on cloud cover overlap. The
decorrelation length L in Wang et al. (2016) is used to adjust the de-
gree of cloud fraction overlap, while L., in this study is used to adjust
cloud condensate vertical alignment. The paper is structured as follows.
Section 2 details a new parameterization of L., based on cloud resolving
model (CRM) simulations of two deep convective systems. Section 3
compares variousL.,, including the new parameterization, in terms of
simulated CRFs and radiative heating rates. Also explored in this section
are reasons for the distinct behavior of different parameterizations and
the role of L, in modulating these fields. Section 4 discusses the relative
importance between cloud cover overlap and cloud condensate align-
ment. The last section summarizes the main findings of this study.

2. Diagnosis and parameterization of L,
2.1. Cloud condensate vertical alignment in CRM simulations

Cumulus clouds are usually associated with large subgrid horizontal
variability because of intense turbulence inside the clouds (Wang et al,,
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2015). Fig. 1a shows the subgrid cloud water (liquid + ice) distribution
for one snapshot simulation of deep convection by the SAM (System for
Atmospheric Modeling) cloud-resolving model (Khairoutdinov and
Randall, 2003). Technical details of the model configuration can be
found in Wang et al. (2016). The subgrid in this study refers to the
CRM grid at the resolution of 4 km, and any variability in the horizontal
dimension is down to this scale. Fig. 1a indicates that cloudy cells are
widely spread in the upper two layers (blue), whereas they are sporadi-
cally distributed in the middle layers (red). This is consistent with the fact
that anvil clouds usually occupy a larger cloud fraction and convective
cores occupy a smaller cloud fraction. A remarkable peak-to-peak corre-
spondence is apparent between the two convective layers, even though
they span as far as 3 km. However, such a clear correlation is not apparent
in the two anvil layers, although they are adjacent to each other with an
interval of <500 m. It is thus implied that vertical correlation and
decorrelation length L,varies in different cloud regimes. Although the
homogenous assumption excludes any variability at each level, variability
remains in the cloud condensate path (CCP) (green line in Fig. 1b), which
is also reflected in the cumulative condensate path (green line in Fig. 2b).
It is important to remember the geometry of cloud hydrometeors is
governed by that of cloud cover, in view of the fact that cloud hydrome-
teors can only exist within cloudy cells. Constrained by the same cloud
cover geometry shown in Fig. 2a, the generated stochastic subcolumns
under two L, extremes are shown in Fig. 1c and d. Details of the stochas-
tic method will be provided in Section 3.1. We noticed that maximum
overlap (MO,L.,, = ) produces higher peak-to-peak correlation, while
random overlap (RO, L., = 0) generally weakens the correlation. As a re-
sult, the maximum value of CCP is increased under MO, whereas it is
somewhat decreased under RO conditions.

2.2. Diagnosis of Le,

First, to diagnose L, from CRM simulations, the correlation coeffi-
cient p is calculated for any two adjacent levels. Here, the correlation
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Fig. 1. Horizontal subgrid distribution and vertical alignment of cloud hydrometeors under (a) CRM output geometry, (b) PPH, (c) maximum overlap and (d) random overlap assumptions.
The abscissa is the number index of CRM subcolumns and the ordinate is relative values of cloud hydrometeor amount (blue and red) and cloud condensate path (green).
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