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A B S T R A C T

An approximate scheme that permits a much simplified application of method of moments to the
study of aerosol coagulation and gelation processes has been proposed and verified in this work.
The central idea underlying the scheme is to express a fractional moment in terms of its adjacent
integer moments. In this manner the moment equations are then decoupled, and can be solved
separately and analytically. The crucial rules for approximating fractional moments are
proposed. A method of moments using the new scheme is applied to the study of aerosol
coagulation characterized by various collision kernels, including Brownian kernels in the free-
molecular and continuum regime and parametric gelling kernel. The computational accuracy of
the proposed scheme is validated with a sectional model. The simulational results are extensively
compared with previously published results.

1. Introduction

The study of coagulation and/or coalescence of particles has long been a topic of paramount importance in a wide variety of
aerosol-related disciplines, including material synthesis, combustion, polymerization, contamination control. These mechanisms
play a significant role in many aerosol processes by profoundly affecting the growth characteristics, the morphology, as well as the
size distribution of a particle system. Particle coagulation is in general considered as a time-dependent process governed by the
following population balance equation (PBE), the Smoluchowski's equation (Friedlander, 1997; Fuchs, 1989),
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where n v t( , )p is in general the number concentration of particles of volume v at time t , K u v( , ) is the collision kernel for describing
the frequency in which two particles of volume u and v collide with each other.

Eq. (1) is a non-linear integro-differential equation, which is in general not analytically intractable except for some specific,
simple kernels, such as constant kernel. For most realistic kernels, finding a solution to above PBE is non-trivial and considerable
effort has been expended in developing various useful methods for this purpose. Based on different disciplines these methods can
broadly be categorized into deterministic methods and stochastic methods; the former include methods of moments (Brown,
Kauppinen, Jokiniemi, Rubin, & Biswas, 2006; McGraw, 1997; Terry, McGraw, & Rangel, 2001; Yu, Lin, & Chan, 2008), sectional
methods (Jeong & Choi, 2001; Landgrebe & Pratsinis, 1990; Mitrakos, Hinis, & Housiadas, 2007; Pyykönen & Jokiniemi, 2000;
Wu & Biswas, 1998), uni-model/bi-model (Jenong & Choi, 2003; Kruis, Kusters, Pratsinis, & Scarlett, 1993) based on solving a set
of differential equations analytically or numerically; while the latter involve primarily Monte Carlo methods (Garcia, Broeck,
Serneels, & Aertsens, 1987; Kruis, Maisels, & Fissan, 2000; Lee & Matsoukas, 2000; Zhao, Kruis, & Zheng, 2009). Among all
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these schemes, method of moments has proved to be mathematically rigorous and numerically economical. A method of moments is
able to offer a simple yet effective means for the description of dynamic behaviors of a particle ensemble by tracking the time rate of
change of moments of the quantities one considers. Such quantities can be particle volume, particle charge, etc. The nth moment of
particle ensemble, Mn, in terms of particle volume is in general defined by
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Multiplying both sides of Eq. (1) with vn, integrating over all the particle sizes and using Eq. (2), one obtains (Williams &
Loyalka, 1991)
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where function f u v n( , , ) is given by f u v n u v u v( , , ) = ( + ) − −nn n n. It is clear that function f u v n( , , ) respectively outputs −1, 0 and
uv2 for the first three integer moments.

At this point one can derive a set of ordinary differential equations (ODE) from Eq. (3). Through solving these equations, one can
readily obtain information about the interesting properties about the particle ensemble without tracking the entire particle size
spectrum, which may include hundreds or thousands size bins. This feature renders a moment model almost computational
instantaneous, especially compared with its time-consuming counterparts, e.g. a Monte Carlo method. Moreover, under certain
circumstances a method of moments can provide a relatively accurate description of evolution of the particle system by solving Eq.
(1) analytically. Methods of moments face also several shortcomings. One such shortcoming is that the implementation of a moment
model could be extremely tedious in some cases; for example, the resultant moment expressions formulated in a bipolarly charging
process of ultrafine aerosol particles are quite complex (Park, Lee, Shimada, & Okuyama, 2005). In addition, although many
moment models do not require assumptions on the functional form (e.g. a log-normal model) of the particle size distribution, few
such models (Lee, Chen, & Gieseke, 1984) are still relying on a prior knowledge of the size distribution.

When applying method of moments one often needs to deal with fractional moments, whose appearance is due to the physical
derivation of the original collision kernels. Several schemes are now available for handling this issue. One feasible scheme is to use
an auxiliary equation, which is derived based on a priori assumption of the particle size distribution. With the help of this equation
one can evaluate an arbitrary fractional moment (Lee et al., 1984; Park et al., 2005; Peterson, Gelbard, & Seinfeld, 1978). Another
method is to express a fractional moment in terms of a function with respect to several integer or non-integer moments using a
Taylor-series expansion technique (Yu, Liu, Lin, & Seipenbusch, 2015; Yu et al., 2008). The most straightforward scheme is perhaps
to express a fractional moment in terms of several integer moments using some interpolation techniques, such as Lagrange
polynomials (Estrada & Cuzzi, 2008; Frenklach, 2002). In the framework of such a scheme a fractional moment Mp (p is a non-
integer order) in the normalized form, M M M′ = / (0)p p p (where M (0)p is the initial value of Mp), can be expressed
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with n being the maximum moment order and exponent L p( )j

n a Lagrange interpolation with respect
to p. The interpolation scheme is straightforward which does not involve any priori assumptions. However, by simply expressing a
fractional Mp as a function of the whole-order integer moments, one may encounter relatively complex expressions for fractional
moments, which further give rise to a set of coupled and complicated ODEs that can only be solved numerically. This is particularly
true for the case when the collision kernel is parametrically expressed.

In this work we devise an approximate yet effective scheme, for dealing with those fractional moments in hope of providing a
simple method of moments for analyzing various aerosol coagulation processes. The new scheme is based largely upon the idea of
expressing a fractional moment only in terms of its adjacent integer moments, but not the whole-order moments as above. The
concept of adjacent moments with respect to a fractional moment will be discussed in the next section. We propose the related rules
for expressing a fractional moment in terms of the relevant integer moments. To verify the proposed scheme, we further apply a
method of moments using the new scheme to the study of coagulation processes characterized by various collision kernels.

2. Methodology

The crucial idea underlying the present scheme is elucidated by a particular example of case study, namely applying a moment
method to study aerosol coagulation governed by Brownian kernel in the continuum regime. The kernel in this regime has the
general form (Mountain, Mulholland, & Baum, 1986)

K u v K u v u v α( , ) = ( + )( + ), 0 ≤ ≤ 1,α α α α
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where K0 is the collision coefficient, α is the exponent. Typically, α take the following values: (1) α = 0; in this case K reduces to
constant kernel; (2) α = 1/3; K turns out to be Brownian kernel in the continuum regime for spherical particles; (3) α D= f where Df

is the fractal dimension; kernel is now applicable to modeling coagulation of particle clusters due to the Brownian motion.
One can combine Eq. (4) with Eq. (3) and obtain the following moment equations
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