Contents lists available at ScienceDirect

## Journal of Aerosol Science

journal homepage: www.elsevier.com/locate/jaerosci

## Numerical investigation of the interaction, transport and deposition of multicomponent droplets in a simple mouth-throat model

## Xiaole Chen<sup>a</sup>, Yu Feng<sup>b</sup>, Wenqi Zhong<sup>a,\*</sup>, Clement Kleinstreuer<sup>c</sup>

<sup>a</sup> Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, Jiangsu Prov. 210096, China

<sup>b</sup> School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA

<sup>c</sup> Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA

### ARTICLE INFO

Keywords:

Multicomponent droplet inhalation droplet-vapor interaction airway-wall condition hygroscopic growth deposition efficiency

#### ABSTRACT

A basic analysis of inhaled multicomponent droplet-vapor interaction and subsequent aerosol deposition is very important for the understanding of natural phenomena as well as for healthcare related applications. Employing a highly idealized mouth-throat (MT) model as a test bed, the transport and deposition mechanisms of a water-droplet are simulated, considering ethanol, sodium chloride and fluorescein as components. The flow-field equations are solved with a validated transition SST model which can predict the effects of flow rate, relative humidity (RH), and wet vs. dry airway walls on aerosol deposition efficiency (DE). The simulation results indicate that the hygroscopic growth of sodium chloride particles is sensitive to the saturation pressure of water vapor. A high flow rate decreases the RH in the airways as well as the average growth ratios of deposited and escaped droplets; but, still increases the DE. When compared to a dry boundary condition, the wet airway-wall increases the DE up to 4.6% when RH = 30% and the flow rate is 60 L/min. It also increases the average growth ratio of deposited droplets notably, i.e., larger than 0.5 for most conditions, while its effect on the average growth ratio of deposited droplets is not apparent. A high inlet RH can significantly enhance the hygroscopic growth of the droplets and DE, especially when it is larger than the RH threshold for the hygroscopic component. Besides, it can elevate the growth ratios of deposited and escaped droplets at the same time, which could be utilized to reduce the deposition of submicron hygroscopic aerosol in the upper airway.

#### 1. Introduction

From air pollutants to cigarette smoke particles and pharmaceutical aerosols, many inhalable aerosols contain soluble and/or volatile components. As the humidity conditions in the human airways are normally higher than in the ambient atmosphere, these components can interact with water vapor, causing a change in aerosol size. Thus, aerosol - vapor interactions can significantly influence the trajectories of the aerosols and hence lung deposition.

Numerous experiments and simulations have been carried out to investigate the mechanisms of such aerosol - vapor interactions and to improve the efficiency of inhalers. For example, Cheng, Kleinstreuer, Kim and Zhang (2004a) numerically analyzed the effect of evaporation on JP-8 fuel droplet deposition in a human upper airway model. Later on, Kleinstreuer, Kim and Zhang (2006a) studied evaporative and hygroscopic effects on saline droplet deposition in upper airways, and concluded an increase in solute

http://dx.doi.org/10.1016/j.jaerosci.2016.12.001

Received 20 April 2016; Received in revised form 27 October 2016; Accepted 12 December 2016 Available online 22 December 2016 0021-8502/ © 2016 Elsevier Ltd. All rights reserved.







<sup>\*</sup> Corresponding author.

| Nomenc                       | lature                                                 |   |
|------------------------------|--------------------------------------------------------|---|
| Α                            | surface area of the droplet                            |   |
| $a_1, a_2, a_3$              | constants determined by particle Reynolds number       |   |
| $\alpha_m$                   | mass thermal accommodation coefficient                 |   |
| $C_{1}, C_{2}$               | constants in Eq. (31).                                 |   |
| $C_c$                        | Cunningham correction factor                           | , |
| $C_D$                        | drag coefficient                                       | i |
| $C_{Dd}$                     | drag force coefficient for droplet                     | i |
| $Cd_{\omega}$                | cross-diffusion term                                   | i |
| $C_m$                        | Fuchs-Knudsen number correction                        | i |
| $C_{\mu}$                    | coefficient in the turbulent model                     |   |
| C <sub>d.i</sub>             | specific heat of the component <i>i</i> in the droplet |   |
| D.                           | inlet diameter                                         |   |
| D <sub>e</sub>               | mass diffusivity of component e                        |   |
| $D_w$                        | mass diffusion coefficient for water vapor             |   |
| $\widetilde{D}_{k}$          | modified term of destruction of turbulence kinetic     |   |
| <i>D</i> <sub><i>K</i></sub> | energy                                                 |   |
| Da                           | dissipation of $\omega$                                |   |
| d_                           | dronlet diameter                                       |   |
| $E_{u1}$ , $E_{u2}$          | transition source and destruction source terms         |   |
| - 71, - 72<br>f              | damping functions for fluctuating velocity in pear-    |   |
| Ji                           | wall region $i = u v w$                                |   |
| f                            | wall region, $t = u, v, w$                             |   |
| J <sub>u</sub>               | domning function normal to the necessary wall          |   |
| $J_v$                        | damping function normal to the nearest wall            |   |
| $f_w$                        | damping function normal to $f_u$ and $f_v$             |   |
| G <sub>i</sub>               | zero-mean, unit variance independent Gaussian ran-     |   |
| <b>→</b>                     | dom numbers                                            |   |
| Ś                            | gravitational acceleration                             |   |
| i                            | van't Hoff factor                                      |   |
| $K_e$                        | Kelvin effect correction for component <i>e</i>        |   |
| $K_w$                        | Kelvin effect correction for water vapor               |   |
| Kn                           | Knudsen number                                         |   |
| k                            | turbulence kinetic energy                              |   |
| le                           | eddy length scale                                      |   |
| $L_e$                        | latent heat of evaporable component e                  |   |
| $M_e$                        | molar mass of the component of interest e              |   |
| m <sub>d</sub>               | mass of the droplet                                    |   |
| $m_{d,i}$                    | mass of the component <i>i</i> in the droplet          |   |
| $\overline{n}_e$             | the average mass flux of evaporable component $e$ on   |   |
|                              | the droplet surface                                    |   |
| $n_e$                        | mass flux of evaporable component e                    |   |
| Nu                           | Nusselt number of the droplet                          |   |
| Pr                           | Prandtl number                                         |   |
| $\stackrel{P_k}{\sim}$       | production of turbulence kinetic energy                |   |
| $P_k$                        | modified term of $P_k$ with intermittency              |   |
| $P_{ve,sat}(T_d)$            | saturation pressure of component e under tempera-      |   |
|                              | ture $T_d$                                             |   |
| $P_{\gamma 1}, P_{\gamma 2}$ | transition source and destruction source terms         |   |
| $P_{\theta t}$               | source term in Eq. (5).                                |   |
| р                            | fluid pressure                                         |   |
| R                            | universal gas constant                                 |   |
| $R_e$                        | gas constant of component e                            |   |
| $R_w$                        | gas constant of water vapor                            |   |
| $r_{\infty}$                 | radius of the air around the droplet                   |   |
| Rea                          | droplet Reynolds number                                |   |
| · u                          | L                                                      |   |

number

| RH                     | relative humidity                                     |
|------------------------|-------------------------------------------------------|
| Sc                     | Schmidt number                                        |
| $Sc_t$                 | turbulent Schmidt number                              |
| sh                     | Sherwood number of the droplet                        |
| $\Gamma_a$             | temperature of the surrounding air                    |
| $\overline{L}_d$       | droplet temperature                                   |
| Γ <sub>L</sub>         | fluid Lagrangian integral time                        |
| t                      | time                                                  |
| cross                  | eddy crossing time                                    |
| $1, t_2, t_3$          | constants in Eq. (30).                                |
| u                      | fluid velocity                                        |
| $\overrightarrow{u_d}$ | velocity vector of the droplet                        |
| u <sub>i</sub>         | instantaneous velocity of the fluid, $i = x, y, z$    |
| <del>ī</del> i         | time average velocity                                 |
| $u_i'$                 | fluctuating component                                 |
| x <sub>e</sub>         | mole fraction of $e$ in the droplet                   |
| $x_s$                  | mole fraction of soluble component, i.e., NaCl in the |
|                        | validation case                                       |
| x <sub>w</sub>         | mole fraction of water                                |
| Y <sub>e,surf</sub>    | mass fraction of the evaporable component $e$ on the  |
|                        | interface of the droplet                              |
| $Y_{e,\infty}$         | mass fraction of the evaporable component $e$ in the  |
|                        | surrounding gas                                       |
| Y <sub>w</sub>         | mass fraction of the water vapor                      |
| Y <sub>w,surf</sub>    | mass fraction of the water vapor on the interface of  |
|                        | the droplet                                           |
| Yw. 00                 | mass fraction of the water vapor in the surrounding   |
| ,                      | air                                                   |
| v                      | distance to the nearest wall                          |
| v <sup>+</sup>         | dimensionless wall distance                           |
| ,<br>,                 |                                                       |
| Greek                  |                                                       |
|                        |                                                       |
| $\alpha_m$             | mass thermal accommodation coefficient                |
|                        |                                                       |

| $a_m$               | mass mermai accommodation coemcient              |
|---------------------|--------------------------------------------------|
| $\Delta T$          | temperature change in one time step              |
| γ                   | intermittency                                    |
| $\gamma_e$          | activity coefficient of component e              |
| $\gamma_w$          | water activity coefficient                       |
| $\xi_i$             | random numbers from standard normal distribution |
| λ                   | gas mean free path                               |
| $\lambda_g$         | thermal conductivity of the surrounding gas      |
| μ                   | dynamic viscosity of the fluid                   |
| $\mu_t$             | turbulent viscosity                              |
| υ                   | kinematic viscosity of the fluid                 |
| $v_t$               | turbulent eddy viscosity                         |
| ρ                   | fluid density                                    |
| $ \rho_d $          | droplet density                                  |
| $ ho_g$             | density of surrounding gas                       |
| $\rho_{vw,sat}$     | saturation water vapor density                   |
| $\sigma$            | surface tension of the droplet                   |
| $\sigma_k$          | turbulent Prandtl number for k                   |
| $\sigma_{\!\omega}$ | turbulent Prandtl number for $\omega$            |
| τ                   | particle relaxation time                         |
| $	au_e$             | eddy lifetime                                    |
| $	au_w$             | wall shear stress                                |
| $\phi$              | heat flux                                        |
| ω                   | specific dissipation rate                        |
|                     |                                                  |

Download English Version:

# https://daneshyari.com/en/article/5753962

Download Persian Version:

https://daneshyari.com/article/5753962

Daneshyari.com