ARTICLE IN PRESS

IOURNAL OF ENVIRONMENTAL SCIENCES XX (2017) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.jesc.ac.cn

Quantification of hookworm ova from wastewater matrices using quantitative PCR

Pradip Gyawali^{1,2,*}, Warish Ahmed¹, Jatinder Sidhu^{1,2}, Paul Jagals², Simon Toze^{1,2}

- 1. CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
- 5 2. School of Public Health, The University of Queensland, Herston Road, Qld 4006, Australia

ARTICLEINFO

- 10 Article history:
- 11 Received 22 April 2016
- 12 Revised 20 September 2016
- 13 Accepted 26 October 2016
- 14 Available online xxxx
- 35 Keywords:
- 36 Wastewater matrices
- 37 Quantitative PCR
- 38 Hookworm ova
- 39 Health risks

40

 $\frac{43}{41}$

46

47

48

49

50

51

52

53

54

55

6

ABSTRACT

A quantitative PCR (qPCR) assay was used to quantify Ancylostoma caninum ova seeded into 15 treated wastewater and unseeded wastewater and sludge samples. We have estimated the 16 average gene copy numbers for a single ovum using a mixed population of ova. The average 17 gene copy numbers derived from the mixed population were used to estimate numbers of 18 hookworm ova in A. caninum seeded and unseeded wastewater and sludge samples. The 19 newly developed qPCR assay estimated an average of 3.7×10^3 gene copies per ovum, which 20was then validated by seeding known numbers of hookworm ova into treated wastewater. The 21 qPCR estimated an average of (1.1 \pm 0.1), (8.6 \pm 2.9) and (67.3 \pm 10.4) ova for treated wastewater 22 that was seeded with (1 ± 0) , (10 ± 2) and (100 ± 21) ova, respectively. The further application 23 of the qPCR assay for the quantification of A. caninum ova in unseeded wastewater matrices 24 indicated that 50%, 90% and 67% of treated wastewater (1 L), raw wastewater (1 L) and sludge 25 (~4 g) samples had variable numbers of A. caninumgene copies present. After conversion of the 26 qPCR estimated gene copy numbers to ova numbers for unseeded wastewater samples treated 27 wastewater, raw wastewater, and sludge samples had an average of 0.02, 1.24 and 67 ova, 28 respectively. The result of this study indicated that qPCR can be used for the quantification of 29 hookworm ova from wastewater and sludge samples; however, caution is advised in 30 interpreting qPCR generated data for health risk assessment because of variable numbers of 31 gene copies in an ovum depending on the cell development stage of an ovum.

© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. 33

Published by Elsevier B.V. 34

Introduction

Wastewater use is expected to increase significantly to meet rapidly growing demands for potable and non-potable water supplies due to growing population and changing the climate (Hanjra et al., 2012; International Water Association, 2008; The World Bank, 2010). It has been estimated that around 20 million ha of agricultural lands are irrigated with treated as well as raw wastewater (Carr, 2005; International Water Association, 2008). In addition, direct application of raw wastewater into agricultural land is a common practice in

developing countries (Trang et al., 2006; Vuong et al., 2007). 56 This practice has serious public health implications due to the 57 presence of high numbers of enteric pathogens and their 58 potential transmission to humans via agricultural products 59 (Jimenez et al., 2007; Toze, 2006).

The extent of the health risk, however, depends on several 61 factors such as numbers of pathogens present in wastewater, 62 infective dose, exposure routes and the susceptibility of the 63 exposed individual (Haas et al., 1999; Navarro and Jimenez, 64 2011). Among the disease-causing microbial pathogens in 65 wastewater, helminths such as hookworm ova/larvae pose a 66

http://dx.doi.org/10.1016/j.jes.2016.10.019

1001-0742/© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Gyawali, P., et al., Quantification of hookworm ova from wastewater matrices using quantitative PCR, J. Environ. Sci. (2017), http://dx.doi.org/10.1016/j.jes.2016.10.019

Q3

^{*} Corresponding author. E-mail: pradep033@yahoo.com (Pradip Gyawali).

67

68

70

71

72

73

74 75

76

78

79

80

81

82

83

84

85

88

89

91

92

94

95

96 97

98

100

101

102

103

104

105

107

109

110

112

113

114

115

116

117

118

119

120

 $122 \\ 123$

124

126

O7

06

05

significant health risk to humans because as low as <10 viable ova/larvae can cause infections in humans (Abaidoo et al., 2010; WHO, 2012).

Wastewater treatment processes are designed to inactivate the viable hookworm ova and consequently minimise the potential health risks associated with the use of treated wastewater (US EPA, 2003; WHO, 2006). However, complete inactivation of hookworm ova from wastewater and sludge (liquid and solid) is often difficult to achieve in developing countries due to the lack of ignorance and technology required for treatment (Konate et al., 2012; Konate et al., 2013; Toze, 2006). Hookworm ova can remain viable in the environment for up to a year under favourable conditions (Gyawali et al., 2015a). Therefore, a better understanding of the health risk posed by hookworm ova in the wastewater matrices (liquid and sludge) requires accurate identification and quantification of their presence before and after wastewater treatment.

Classical incubation and staining methods have been widely used to quantify hookworm ova from wastewater (Bastos et al., 2013; de Victorica and Galvan, 2003; Konate et al., 2013; Sharafi et al., 2012; US EPA, 2003), however, these methods have limitations. For instance, the incubation method requires up to 4 weeks (depending on the incubation temperature) to obtain results which may not be ideal for a situation where rapid health risk assessment is required (Boehm et al., 2009; Gyawali et al., 2015a). Similarly, the stain based methods require skilled personnel to differentiate hookworm ova from ova of other parasites such as Oesophagostomum bifurcum and Trichostrongylus spp. (Cabaret et al., 2002; Traub et al., 2007; Verweij et al., 2007). In addition, the performance of both these methods depends on the sensitivity of a microscope, which has been reported to be low. Weber et al. (1991) reported that the detection threshold of a microscope could be as low as 5%. This means that, 95% hookworm ova in a slide may not be detected during microscopic observation. In addition, hookworm ova on a slide must be observed within half an hour otherwise ova may escape detection (Verweij et al., 2007). Therefore, it is vital to develop a rapid, specific and sensitive method for simultaneous detection and quantification of hookworm ova from wastewater matrices.

We have recently developed a real-time PCR method for rapid, specific and sensitive detection of Ancylostoma caninum (dog hookworm) ova from wastewater matrices by targeting rRNA of Internal Transcribed Spacer (ITS-1) region (Gyawali et al., 2015a). A. caninum ova are genetically and morphologically very similar to human hookworm, and also occur in high numbers in dog faeces in Australia. Since it was difficult to obtain human hookworm in Australia, instead, A. caninum was selected as a surrogate for human hookworm. The detection sensitivity of the method was <1 ova/L of treated wastewater, < 4 ova per/L of raw wastewater and <4 ova/4 g sludge. The results can be obtained within 4–6 hr compared to incubation method that requires a longer time (up to few weeks). However, the real-time PCR method, however, cannot quantify amplified gene copy of target hookworm species.

While quantitative PCR (qPCR) can be used to quantify the numbers of pathogens in an environmental sample (Ahmed et al., 2014, 2015; Shanks et al., 2008), no information is available on the application of qPCR-based methods to quantify hookworm ova. Only a handful of studies had attempted to quantify Ascaris ova using qPCR under laboratory conditions (Pecson et al., 2006;

Raynal et al., 2012). Pecson et al. (2006) created profiles of the ITS-1 127 rDNA and rRNA levels during the development of Ascaris eggs 128 from single cells to third-stage larvae. The results of this study 129 suggested that the accurate quantification of Ascaris ova can be 130 challenging due to the presence of varying numbers of gene 131 copies in Ascaris ovum depending on the development stage. It is 132 highly likely that wastewater matrices may contain mixed 133 population (early to late cell staged) of hookworm ova. Therefore, 134 determining average gene copy numbers from a mixed popula- 135 tion is essential to estimate the likely gene copy numbers per 136 ovum. Such information may lead to the development of a qPCR 137 assay to quantify hookworm ova from wastewater matrices. In 138 view of this, an attempt was undertaken to estimate the numbers 139 of hookworm ova from seeded wastewater and un-seeded 140 wastewater matrices. The quantitative method developed in 141 this study would aid in the risk assessment of hookworm 142 associated with wastewater reuse.

1. Materials and methods

1.1. Source of hookworm ova for the study

Fresh dog faecal samples were collected from the School of 147 Veterinary Science, University of Queensland, Australia. A. 148 caninum ova were isolated within 48 hr after collection.

143

146

150

1.2. Development of qPCR assay

A 101 base pair (bp) of the 5.8S rRNA gene from ITS-1 region of 151 A. caninum plasmid DNA sequence (TTTGCTAACGTGCACTGA 152 ATGACAGCAAACTCGTTGTTGCTGCTGAATCGTTTACCGACTA 153 TAAAACGTTTTGGCAGTGGCTAGTATGACAACGGTGTTTC) was 154 purchased from Integrated DNA Technologies (IDT) (IDT 155 Technology, USA). The 100 μL UltraPure™ water was added 156 into the tube to obtain 40 ng/µL of plasmid DNA. Gene copy 157 numbers were calculated by multiplying the DNA concentration 158 by Avogadro's number and dividing by the product of the 159 plasmid size (bp) and an average weight of a base pair (Yun 160 et al., 2006). Serial dilutions were prepared ranging from 10⁵ to 161 10^{0} gene copies per μL and served as a standard. Previously 162published primers, F: 5'-TTT GCT AAC GTG CAC TGA ATG-3' 163 and R: 5'-GAA ACA CCG TTG TCA TAC TAG CC-3', probes, P: 164 FAM-5'-AAC TCG TTG TTG CTG CTG AA-3'-BHQ3 and cycling 165 parameters, 95°C for 15 min, 40 cycles of 95°C for 15 sec and 166 59°C for 1 min were used to amplify the target gene (Gyawali 167 et al., 2015a). The qPCR amplification was performed in 25 μ L $_{168}$ reaction mixtures containing 12.5 µL iQ™ Supermix (Bio-Rad 169 Laboratories, USA), 250 nmol/L of each primer, 400 nmol/L of 170 probe, 3 µL of template DNA and UltraPure™ DNase/RNase-free 171 distilled water (Life Technologies, Australia). The qPCR assays 172 were performed using the Bio-Rad CFX96 thermal cycler 173 (Bio-Rad Laboratories, USA).

1.3. qPCR reproducibility and lower limit of quantification (LLOQ) 175

The reproducibility of the qPCR assay was assessed by 176 determining the intra-assay repeatability and inter-assay 177 reproducibility. The coefficient of variation (CV) of the assay 178 was calculated by analysing the standards. The intra-assay 179

Download English Version:

https://daneshyari.com/en/article/5754212

Download Persian Version:

https://daneshyari.com/article/5754212

Daneshyari.com