

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.jesc.ac.cn

MgO-based adsorbents for CO₂ adsorption: Influence of structural and textural properties on the CO₂ adsorption performance

- Gutiérrez-Bonilla Elvira^{1,2}, Granados-Correa Francisco^{1,*}, Sánchez-Mendieta Víctor², Morales-Luckie Raúl Alberto²
- 1. National Institute of Nuclear Research, Department of Chemistry, A.P. 18-1027, Col. Escandón, Miguel Hidalgo Delegation, Zip Code 1180 México D.F., Mexico. E-mail: elvisboni02@hotmail.com
 - 2. Autonomous University of México State, Faculty of Chemistry, Colón avenue, intersection with ride Tollocan s/n Toluca, México, Mexico

ARTICLEINFO

Article history: 13

12

- Received 14 July 2016 14
- Revised 20 September 2016 15
- Accepted 12 November 2016 16
- Available online xxxx 17
- 39 Keywords:
- 40 CO2 adsorption
- MgO-based adsorbents 41
- 42 Porous materials
- Solution-combustion synthesis 43
- Ball-milling process 44
- Textural properties 45

ABSTRACT

A series of MgO-based adsorbents were prepared through solution-combustion synthesis and 18 ball-milling process. The prepared MgO-based powders were characterized using X-ray 19 diffraction, scanning electron microscopy, N₂ physisorption measurements, and employed as 20 potential adsorbents for CO2 adsorption. The influence of structural and textural properties of 21 these adsorbents over the CO2 adsorption behaviour was also investigated. The results 22 showed that MgO-based products prepared by solution-combustion and ball-milling 23 processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique 24 physico-chemical properties that significantly contribute to enhance their CO₂ adsorption. It 25 was found that the MgO synthesized by solution combustion process, using a molar ratio of 26 urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5 hr (MgO-BM2.5h), 27 exhibited the maximum CO₂adsorption capacity of 1.611 mmol/g at 25°C and 1 atm, mainly 28 via chemisorption. The CO2 adsorption behaviour on the MgO-based adsorbents was 29 correlated to their improved specific surface area, total pore volume, pore size distribution 30 and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five 31 consecutive CO₂ adsorption-desorption times, without any significant loss of performance, 32 that supports the potential of MgO-based adsorbent. The results confirmed that the special 33 features of MgO prepared by solution-combustion and treated by ball-milling during 2.5 hr are 34 favorable to be used as effective MgO-based adsorbent in post-combustion CO2 capture 35 technologies.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. 37 Published by Elsevier B.V.

Introduction

It is well documented that carbon dioxide (CO2) is the most significant greenhouse gas that mainly contributes to global warming. In the past five decades, atmospheric CO2 emissions have been increased due to the accelerated industrial growth and technological development, resulting in a potential threat 57 for the environment and ecosystems (Shafeeyan et al., 2015). 58 The main anthropogenic sources of CO2 emissions are 59 attributed to the excessive fossil materials combustion such 60 as carbon, oil and natural gas in the energy production and in 61 many industrial processes (Bhagiyalakshmi et al., 2011). In 62

http://dx.doi.org/10.1016/j.jes.2016.11.016

1001-0742/© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Elvira, G.-B., et al., MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO₂ adsorption performance, J. Environ. Sci. (2016), http://dx.doi.org/10.1016/j.jes.2016.11.016

52

53

54

55

56

46

#

^{*} Corresponding author. E-mail: francisco.granados@inin.gob.mx (Granados-Correa Francisco).

63

64

66

67

69

70 71

72

73

74

05 04

76

77

78

79

81

82

84

85 86

87 88

06

90

91

93

94 95

96

97

98

99

100

101

102

103

O7

106

108

109

110

111

112

113

114

115

118

119

this context, inevitably due to the fact that fossil fuels will be the predominantly worldwide power supply, it is necessary to take urgent measures to reduce the high CO2 concentrations in the atmosphere at great scale (Ello et al., 2013). As a consequence, currently, there are different CO2 capture technologies for these purposes, including adsorption process, membrane separation, cryogenic methods, and so on. Among CO₂ capture technologies, the CO₂ adsorption using porous solid adsorbents has been receiving much attention because of their advantages, such as low regeneration energy requirements, no liquid waste, low cost, both pressure swing adsorption and temperature swing processes are widely used (Harrison, 2004). Indeed, also has attracted the researchers' attention due to that can to be designed and studied a great variety of potential CO₂ adsorbents of varied nature, cheap, and renewable for use in large-scale post combustion technologies. In this scenario, many solid porous materials have been widely recognized and used as potential adsorbents for CO₂ adsorption, including activated carbons (Houshmand et al., 2012), zeolites (Siriwardane et al., 2005), amine compounds (Saiwana et al., 2014), organometallic networks (Liu et al., 2012), metal oxides (Busca and Lorenzelli, 1982), and hydrotalcites (Radosław et al., 2015), among others.

Amid these above adsorbents listed, metal oxides are promising options for suitable CO2 adsorbents and have a great potential in the future due to their easy accessibility and favorable thermodynamic properties (Kumar et al., 2015). However, the selection criteria of potential metal oxides for a large-scale application, entail their CO2 capture capacity, adsorption rate, thermal stability, regeneration heat, availability, cost, textural and structural properties (Kumar and Saxena, 2014). Specifically, the alkaline-earth metal oxide (MgO) is widely used in many technological applications as: catalysis, toxic waste remediation, additive in refractory, optically transparent ceramic windows, adsorbent for many pollutants, paint and superconductor products, among others (Jin et al., 2012). MgO is a white hygroscopic solid mineral that occurs naturally as periclase, is a source of magnesium, is a non-toxic and environmentally friendly material with higher surface reactivity and adsorption capacity, and is a suitable adsorbent for anions and cations from aqueous solution due to its favorable electrostatic attractive mechanism (Crittenden et al., 2005). In recent studies, MgO has been widely explored for CO2 capture, and has been recognized as one of the most promising adsorbents for CO₂ adsorption together with CaO, because these metallic oxides combine with CO2 present in the flue gas post-combustion and form thermodynamically stable carbonates in a reversible reaction; heating the carbonates regenerates the respective oxides and thus liberates almost pure stream of CO2 that it can be directly transported to a storage site, and subsequently be used technologically (Kumar and Saxena, 2014). It has been reported that MgO can adsorb CO2 below 200°C by carbonation, and can be regenerated by calcination at relatively low temperature compared with conventionally-used CaO subjected to cyclic CO2 capture from flue gases, which makes it very desirable because it is widely accepted that there is a large scope for cost reduction and energy efficiency improvements in CO₂ capture systems (Wang et al., 2011). In general, many metal oxides can qualify for CO2 capture application,

however, one of the key factors in gas—solid reaction is their 123 textural, morphological and structural properties that are 124 essential forenhancing their $\rm CO_2$ adsorption. Thus, synthesis 125 of MgO with improved specific surface area, nanocrystalline 126 size, large total pore volume and narrow size pore distribution 127 is of great interest as $\rm CO_2$ adsorptive materials. The direct 128 relation of these MgO physico-chemical properties with the 129 $\rm CO_2$ capture behavioris still not completely resolved and 130 needs to be investigated.

On the other hand, extensive synthesis methods have been 132 followed to obtain MgO products with porous structures and 133 multiple morphologies, including the precipitation method 134 (Janet et al., 2007), hydrothermal synthesis (Zhao et al., 2011), 135 and sol-gel method (Kim et al., 2005). It is well known that the 136 employed synthesis method and the chemical precursors to 137 prepare powders have a large influence on the materials Q9 textural and structural characteristics such as porosity, specific 139 surface area, particle size, crystallinity, between others. Partic- 140 ular desirable properties of compounds in their use as adsor- 141 bents are mainly extensive specific surface area that means 142 many active sites for contaminant adsorption and a higher 143 porous nature, which plays an important role on CO₂ capture. 144 Therefore, it is evident from the above that there is a need for a $\,^{145}$ continuous improvement and development of new and potential adsorbents for gaseous, aqueous, and non-aqueous 147 streams. Currently, the novel solution-combustion synthesis 148 is widely used for preparing different oxide powders with high 149 purity, high yield, large specific surface areas, and good quality 150 mesoporous structures at short times compared to other 151 conventional synthesis methods. Furthermore, this method is 152 safe, simple and instantaneous for the facile fabrication of 153 nanopowders, indeed, the solution-combustion synthesis re- 154 quires simple equipment with energy saving (Toniolo et al., 155 2010). For this method are required high temperatures for the Q10 exothermic redox reactions and achieve the decomposition the 157 metal salt and the organic fuel for the formation of products. 158 Therefore, extensive studies have been conducted to investi- 159 gate solution-combustion synthesis of many metallic oxide 160 powders using urea as the most commonly used chemical fuel, 161 and some other fuels such as: starch, glycine and sorbitol 162 (Bhatta et al., 2015; Bai et al., 2011; Devaraja et al., 2014; 163 Granados-Correa and Bonifacio-Martínez, 2014; Mantilaka Q11 et al., 2014).

On the other hand, recent advances in nanotechnology 166 have made much interest in preparing metallic oxide 167 nanocompounds. The mechanical ball-milling is an extensive 168 method to obtain nanostructured materials; this mechanical 169 ball-milling treatment allows to activate dry solids and, 170 especially increase its specific surface area as well as improve 171 properties (Janusz et al., 2010). Nanopowders show substantially 172 enhanced adsorption characteristics superior to those of the 173 conventionally prepared powders (Liang et al., 2001). It is 174 important to note that the gas adsorption efficiency can 175 increase with a decrease in the MgO powder size and 176 crystallites. In fact, the high gas adsorption efficiency of 177 nanoparticles is also caused by their large specific surface 178 area, and structural defects on their surface. Furthermore, it has 179 been shown that metallic oxides doped with doping-metals 180 such as Fe, Ni, Cd, Ce, Co among others, show significant 181 changes in their properties with respect to original materials. In $\,$ $\,^{182}$

Download English Version:

https://daneshyari.com/en/article/5754230

Download Persian Version:

https://daneshyari.com/article/5754230

<u>Daneshyari.com</u>