ARTICLE IN PRESS

JOURNAL OF ENVIRONMENTAL SCIENCES XX (2016) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.iesc.ac.cn

Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes

22 Xuchuan Shi¹, Jia Lin², Jiane Zuo^{1,*}, Peng Li¹, Xiaoxia Li¹, Xianglin Guo¹

- 1. State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China. E-mail: sxc14@mails.tsinghua.edu.cn
- 2. Beijing Enterprises Water Group Limited, Beijing 100124, China

ARTICLEINFO

Article history:

10

12

38

30

31 **40**

43

45

46

47

48

49

50

51

52

53

54

55

- 13 Received 15 April 2016
- 14 Revised 8 July 2016
- 15 Accepted 22 July 2016
- 16 Available online xxxx
- 32 Keywords:
- 33 Ammonia inhibition
- 34 VFA accumulation
- 35 Anaerobic digestion
- 36 Process indicator
- 37 Bio-wastes

ABSTRACT

The effect of free ammonia on volatile fatty acid (VFA) accumulation and process instability 17 was studied using a lab-scale anaerobic digester fed by two typical bio-wastes: fruit and 18 vegetable waste (FVW) and food waste (FW) at 35°C with an organic loading rate (OLR) of 19 3.0 kg VS/(m³·day). The inhibitory effects of free ammonia on methanogenesis were 20 observed due to the low C/N ratio of each substrate (15.6 and 17.2, respectively). A high 21 concentration of free ammonia inhibited methanogenesis resulting in the accumulation of 22 VFAs and a low methane yield. In the inhibited state, acetate accumulated more quickly 23 than propionate and was the main type of accumulated VFA. The co-accumulation of 24 ammonia and VFAs led to an "inhibited steady state" and the ammonia was the main 25 inhibitory substance that triggered the process perturbation. By statistical significance test 26 and VFA fluctuation ratio analysis, the free ammonia inhibition threshold was identified as 27 45 mg/L. Moreover, propionate, iso-butyrate and valerate were determined to be the three 28 most sensitive VFA parameters that were subject to ammonia inhibition.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.

Introduction

The rapid increasing disposal of municipal solid wastes (MSWs) has resulted in severe environmental problems in China. Two types of typical bio-wastes, including fruit and vegetable waste (FVW) and food waste (FW), contributed to high organic and water content in MSW (Zhang et al., 2014). As compared with conventional treatment technologies, anaerobic digestion has emerged as one of the most promising alternative technologies for the treatment of high organic content waste as well as recovery of renewable energy-biogas (De Clercq et al., 2016). Despite this finding, various operational problems still prevent the anaerobic process from being widely applied. The substrates'

compositions, usually referred as C/N ratio and ammonia 56 concentration, are considered to be the key parameters affecting 57 process stability and performance (Mata-Alvarez et al., 2014; 58 Yuan and Zhu, 2016).

An optimum C/N ratio in the range of 20 to 30 is essential for 60 anaerobic digestion which can help to keep an appropriate 61 nutrient balance for the microbial growth and to maintain a 62 stable environment (Li et al., 2015; Mata-Alvarez et al., 2014). 63 Therefore, the anaerobic digestion performance of low C/N ratio 64 substrate, such as FW and FVW, is usually not very effective and 65 stable. Low C/N ratio substrates contain a relatively higher 66 percentage of nitrogenous organic matters. Ammonia produced 67 by the biological degradation of nitrogenous organic matters 68

http://dx.doi.org/10.1016/j.jes.2016.07.006

1001-0742/© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Shi, X., et al., Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes, J. Environ. Sci. (2016), http://dx.doi.org/10.1016/j.jes.2016.07.006

^{*} Corresponding author. E-mail: jiane.zuo@tsinghua.edu.cn (Jiane Zuo).

69

70

72

73

74

75

76 77

78

79

81

82

84

85

O3

88

89

90

91 92

93 94

96

97

98

99

100

102

103

105

106

107

108

109

111

112

114

115

116

117

118

119

120 121

124

125

126

127

was in excess for microorganism utilizing. The excess ammonia usually accumulates during the process and leads to an increase of pH, inhibitory effects, and eventually, process deterioration (Ariunbaatar et al., 2015; Sheng et al., 2013). Ammonium ion (NH₄) and free ammonia (FA) (NH₃) are the two principal forms of total ammonia nitrogen (TAN) of which FA has been suggested to be the main cause of inhibition. Hydrophobic free ammonia molecules may diffuse passively through the membrane and into the cell, resulting in proton imbalance and/or potassium deficiency (Belmonte et al., 2011; Chen et al., 2008). A high concentration of ammonia can inhibit methanogenesis resulting in the accumulation of volatile fatty acids (VFAs) and, as a result, low methane yield. In the literature, the inhibitory concentrations of TAN and free ammonia were in the range of 1500-7000 mg/L and 53-1450 mg/L, respectively (Rajagopal et al., 2013). This wide range is mainly due to the different substrates, inocula, environmental conditions (affecting pH and temperature, for instance) and acclimation (Chen et al., 2008; Rajagopal et al., 2013; Yenigün and Demirel, 2013).

Previous research on ammonia inhibition in anaerobic digestion has mainly been focused on inhibition concentration thresholds, inhibition mechanisms, and microbial community shift, etc. (Gao et al., 2015; Poirier et al., 2016; Rajagopal et al., 2013). Furthermore, feasible and sensitive indicators of the anaerobic digestion (AD) process subject to ammonia inhibition are equally important to monitor system health and to prevent the system from collapse. Parameters of biogas production rate, methane yield, pH, VFAs, etc., have been recommended as the process indicators; however, these parameters are either not sensitive enough to reflect the process instability or not feasible for in situ measurement (Nielsen et al., 2007). Biogas production rate and methane yield are the most commonly used monitoring indicators, but these indicators respond slowly and as a result, cannot indicate process instability timely (Boe et al., 2010; Nielsen et al., 2007). The pH measurement is easy to obtain, but not reliable when used in highly buffered systems. Under such conditions, even rapid increases in VFAs or ammonia cannot lead to significant pH fluctuation. Many researchers have suggested that VFAs could be good indicators of the process. VFAs are the most predominant intermediates during the AD process and their accumulation indicates the imbalance between sequential steps of AD process (Boe et al., 2010; Madsen et al., 2011). Ahring et al. (1995) suggested that butyrate and iso-butyrate concentration might be reliable for indicating process instability because they are sensitive to different types of perturbation imbalances. Nielsen et al. (2007) suggested that propionate might be the best indicator during a process disturbance caused by overloading because it has proven significant and long-lasting. Nakakubo et al. (2008) studied thermophilic digestion of pig manure with intermittent NH₄Cl pulsing, and found that iso-butyrate, butyrate, and iso-valerate, rather than propionate, were useful indicators for acute ammonia induced perturbation. Two of the most abundantly produced VFAs (i.e., acetate and propionate) did not accumulate with increased ammonia concentration.

In addition to being intermediates and indicators, VFAs are also essential buffering agents in the AD system. Moreover, high concentrations of VFAs show an inhibitory effect to methanogenesis (Yuan and Zhu, 2016). VFAs accumulate at a

high organic loading rate or during perturbations when 129 methanogens cannot utilize hydrogen and VFAs as quickly 130 as they are produced by acidogens and acetogens. High 131 concentrations of free VFAs are thought to freely permeate 132 the cellular membrane and damage the macromolecules in 133 low-pH environments, especially for the gram-positive bacte- 134 ria (Wang et al., 2009; Yuan and Zhu, 2016). Accumulation of 135 VFAs leads to rapid pH decrease, and eventually, process 136 deterioration. Wang et al. (2009) reported that a propionate 137 concentration of 900 mg/L resulted in the significant inhibi- 138 tion of methanogens. Xu et al. (2014) found that acetic acid 139 was the main VFA inhibitor in methanogenesis when treating 140 kitchen wastes. The initial inhibitory concentration of acetic 141 acid was between 1.5 and 2.5 g/L and the methanogenesis 142 activities were inhibited completely at the VFA concentration 143 of 5.8-6.9 g/L.

Ammonia and VFAs are both inhibitory to methanogenesis 145 and can lead to pH fluctuation. High concentrations of both 146 ammonia and VFAs usually lead the system to fall in an 147 "inhibited steady state", in which the digester runs stably 148 within a neutral pH range, but where methane production 149 rate and volatile solid (VS) reduction rates are quite low 150 (Angelidaki and Ahring, 1993; Chen et al., 2008). Although the 151 individual effects of VFAs or ammonia on methanogenesis 152 have been widely reported, comprehensive analysis of 153 ammonia-VFA interaction has seldom been demonstrated. 154 Whether ammonia or VFAs are the main inhibitory sub- 155 stances that trigger the process perturbation is undefined. 156 Finding useful indicators for potential process perturbation is 157 also unclear. Thus, in this study, the anaerobic digestion of 158 two kinds of typical bio-wastes was conducted to investigate 159 the ammonia inhibition effects on VFA accumulation and 160 process performance. The interaction of ammonia-VFAs, 161 which led the digester into an "inhibited steady state" was 162 also studied. In addition, this study aimed to identify an 163 ammonia inhibition threshold and to determine sensitive VFA 164 parameters as indicator subject to ammonia inhibition. This 165 study provided useful insight into preventing ammonia 166 inhibition from causing low efficient biogas production and 167 process deterioration.

1. Materials and methods

1.1. Substrates and inocula

Raw FVWs were collected from a fruit and vegetable market in 172 Beijing in during July to January of the next year. The FVW 173 mainly contained residues of Chinese cabbage, carrot, lettuce, 174 apple, banana, and watermelon. Raw FW, which mainly 175 consists of leftovers from cooked foods, was collected from 176 students' restaurants in Tsinghua University, Beijing, China. 177 The FWV and FW were pre-treated and homogenized using a 178 food grinder after manually sorting out bones, paper and 179 plastics etc. The samples were stored at 4°C before use. Inocula 180 were anaerobic granular sludge taken from a full-scale upflow 181 anaerobic sludge bed (UASB) reactor treating starch processing wastewater at 35°C. The granular sludge was ground into 183 slurry before the experiment. The characteristics of substrates 184 and inocula are summarized in Table 1 (Lin et al., 2011).

169

171

Download English Version:

https://daneshyari.com/en/article/5754277

Download Persian Version:

https://daneshyari.com/article/5754277

Daneshyari.com